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Abstract— This paper addresses the problem of physical
human-robot collaboration for object manipulation. In particu-
lar, we consider a human-robot architecture where the human
has exclusive knowledge of the object’s desired trajectory and
the robot tries to assist actively, by carrying the object’s load
in order to reduce the human effort that is required to achieve
the desired tracking behavior. The robot estimates the human’s
desired motion via a prescribed performance estimation law
that drives the estimation error to an arbitrarily small residual
set. This estimation is further employed in the object dynamics
equation to compute the interaction force between the human
and the object. Subsequently, an impedance control scheme is
designed based on the aforementioned estimations, achieving
significant reduction on the required human effort, despite
the uncertainty in the robot dynamics. The feedback relies
exclusively on the robot’s force/torque, position as well as
velocity measurements and no a priori explicit information
on the task is required. Finally, extensive experimental results
clarify the proposed method and verify its efficiency.

I. INTRODUCTION

As robots are advancing in both industry and everyday life,
physical human-robot interaction gains increasing interest in
robotic research. Various assistive and rehabilitation robotic
technologies have emerged that relieve patients in their daily
tasks, whereas robots and human workers, sharing a common
workspace, interact physically and collaborate. This paper
concentrates on cooperative object manipulation for human
and robotic co-workers carrying out transportation tasks that
were previously impossible for either the human or the robot
alone. In this way, the combination of the robot’s power and
the human’s planning and decision-making capabilities will
result in a powerful and versatile technology for industry.

A lot of research has been conducted in this field with the
first results pertaining to passive systems. As shown in [1],
[2], such systems cooperate well with humans via physical
interaction, although they lack the ability to minimize the
human effort and actively contribute to the transportation
task. As a result, researchers came up with various proac-
tive systems to address the problem of cooperative object
manipulation. In [3], [4], encountering the concept of role
assignment, novel strategies have been developed for effort
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sharing. However, this is only applicable when the desired
trajectory is a priori known, which rarely is the case in
non-structured environments. Other proactive systems rely
on methods based on human motion intention estimation
combined with an indirect force control scheme. In [5], for
a simple transportation task with known starting and ending
points, a Kalman filter is used to estimate the parameters of
the well-known minimum jerk profile. Afterwards, the results
are fed in an admittance and impedance control scheme
respectively. In the same spirit, a neural network was trained
in [6] to predict human motion intention taking as inputs
position, velocity and force measurements. The predicted tra-
jectory is then provided to an adaptive impedance controller.

To tackle the cooperative object manipulation problem and
particularly the aspects discussed above, various techniques
that rely on task-specific learning and programming-by-
demonstration have also been proposed. In [7], reinforcement
learning and extended Kalman filtering are combined to
develop a behavior based gain controller that provides a
weighted sum action of a reactive and a proactive controller
based on the confidence level prediction. In [8], hidden
Markov models are applied to detect interaction patterns and
classify them on the basis of a database and/or human rating.
The proposed admittance controller acts as a passive system
in case there is no clue for the interaction pattern, otherwise a
motion is created and then translated to a virtual force profile.
Programming-by-demonstration techniques are presented in
[9]–[11]. In [9] a statistical model, based on Gaussian
mixture models, is trained in a pure leader-follower role
distribution after a set of demonstrations, and then the task is
reproduced using Gaussian mixture regression. Observing the
trajectory and interaction forces during demonstration tasks
in [10], a Gaussian mixture model is employed to estimate
the task parameters. The developed model is then able to
generate the required force and trajectory profiles for similar
cooperative tasks.

This paper addresses the motion intention estimation prob-
lem via a robust prescribed performance estimation law that
drives the error between the actual and the desired trajectory
estimation to an arbitrarily small residual set. The proposed
method is based only on position and velocity measurements
as well as the interaction force/torque measurements between
the robot and the object. In this respect, the interaction
force/torque between the human and the object, which is
unknown and thus cannot be employed in the control design,
is estimated using the object dynamics and the desired trajec-
tory estimation. Subsequently, based on the aforementioned
estimation strategy, an adaptive impedance control scheme
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is designed that leads to human’s effort reduction through
the impedance characteristics imposed to the system by the
controller, despite the uncertainties in the robot dynamics.

In this work, we extend significantly the current state
of art [12]–[14], via a more robust estimation algorithm
that converges even though the desired object’s acceleration
profile is nonzero (i.e., arbitrary object’s desired trajectory
based on the human motion planning, as long as it is
bounded and smooth). Moreover, the customizable ultimate
bounds allow us to achieve practical stabilization of the
tracking error, with accuracy limited only by the sensors’
resolution. Finally, we increase the closed loop robustness by
incorporating parametric uncertainty in the robot dynamics.

II. PROBLEM FORMULATION

In this paper, a typical human-robot collaboration system
is investigated that involves a human limb and a robotic
manipulator in a leader-follower scheme, handling a rigidly
grasped object. It is assumed that the robotic manipulator has
at least 6 degrees of freedom (DoF), is fully actuated, and
is equipped with a force sensing handle at its end-effector,
so that measurements of position, velocity and interaction
forces/torques with the object are available. Furthermore,
the geometric and inertial parameters of the grasped object
are considered known. The object’s desired trajectory profile
xdl (t) is determined by the human-leader, whereas the
robot-follower estimates it by xdf (t) via its own available
sensing. The human partner leads the task by simply applying
forces to the object, while the robot control objective is to
achieve “active” following by carrying the object’s load, thus
reducing the interaction force between the human and the
object.

A. Kinematics

We denote the human’s hand coordinates (leader) and the
robot’s task space coordinates (follower) with respect to an
inertial frame {I} by xi =

[

xT
ip, x

T
ir

]T
, i ∈ {l, f}, where

xip corresponds to the position and xir corresponds to the
orientation expressed as roll, pitch and yaw angles. Similarly,
we denote the object’s coordinates with respect to {I} by
xo =

[

xT
op, x

T
or

]T
. Assuming that the contacts are considered

rigid, the following kinematic constraints hold:

xip = xop + li & xir = xor + ai, i ∈ {l, f} (1)

where the vectors li = [lix, liy , liz]
T and ai = [aix, aiy, aiz ]

T

represent the fixed relation between the object’s and the
hand’s/end-effector’s frames expressed in {I}. Since the
object’s geometric parameters are considered known, the
object’s coordinates may be computed via (1). Furthermore,
by differentiating (1) we establish the velocity relationships
ẋip = ẋop+ ẋir× li, ẋir = ẋor or in a compact matrix form:

ẋi = Joiẋo =

[

I3×3 −Li

03×3 I3×3

]

ẋo, i ∈ {l, f} (2)

where Joi is the Jacobian from the hand/end-effector to the

object’s center of mass and Li =





0 −liz liy
liz 0 −lix
−liy lix 0





denotes the cross-product matrix. Notice that since the
hand/end-effector and the object are rigidly connected, the
aforementioned Jacobian is always full rank and hence a
well-defined inverse J−1

oi exists. Differentiating once more
with respect to time, we also establish the acceleration
relation:

ẍi = J̇oiẋo + Joiẍo, i ∈ {l, f} . (3)

Moreover, let qf be the joint space variables of the robot.
Invoking the forward kinematics, we express the task space
variables as a nonlinear function of the joint variables as
xf = Ff (qf ). Finally, differentiating the above equation,
we obtain ẋf = Jf (qf ) q̇f , where Jf (qf ) =

∂Ff (qf )
∂qf

is the
Jacobian matrix.

B. Robot Dynamics

The dynamic model of the robot, in terms of task space
coordinates, is described by:

Mr (qf ) ẍf + Cr (q̇f , qf ) ẋf +Gr (qf ) = Uf + Ff (4)

where Mf is the positive definite inertial matrix, Cf is a
matrix that models Coriolis and centrifugal effects and Gf

represents gravitational forces. The term Ff involves the
interaction force/torque exerted at the end effector by the
object and Uf denotes the input task space wrench. The
relation between the joint torques τf and the task space

wrench is given by τf = J
T

f Uf+
(

I − JT
f J

T

f

)

τin, where Jf

is the generalized inverse that is consistent with the equations
of motion of the manipulator and its end-effector [15]. The
vector τin does not contribute to the end-effector’s wrench
and can be regulated independently to achieve secondary
goals (e.g., manipulability increase or collision avoidance for
the links).

Finally, invoking the kinematic relations (1)-(3), we may
express the aforementioned dynamic model (4) with respect
to the object’s coordinates as follows:

Mof (qf ) ẍo+Cof (q̇f , qf ) ẋo+Gof (qf ) = JT
ofUf +JT

ofFf

(5)
where

Mof (qf ) = JT
ofMf (qf )Jof

Cof (q̇f , qf ) = JT
of (Cf (q̇f , qf )Jof +Mf (qf ) J̇of )

Gof (qf ) = JT
ofGf (qf )

and the following properties hold true.
Property 1: The inertial matrix Mof (qf ) is symmetric and

positive definite.
Property 2: The matrix 2Cof (qf , q̇f )− Ṁof(qf ) is skew-

symmetric, i.e., ξT (2Cof (qf , q̇f )−Ṁof(qf ))ξ = 0, ∀ξ ∈ R
6.

Property 3: The physical parameters of the robot appear
linearly in the dynamic model (5) in terms of a set of
unknown but constant parameter vector θ ∈ ℜQ as follows:

Mof (a)d+ Cof (b, a)c+Gof (a) = Y (a, b, c, d)θ

where Y (a, b, c, d) is a 6×Q regressor matrix, composed of
smooth and known nonlinear functions.
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C. Human Limb Model

A generic model that describes the dynamics of a human
limb during the execution of a movement involves a mass-
damper-spring property, as in [16]:

Ml (ẍdl − ẍl) + Cl (ẋdl − ẋl) +Gl (xdl − xl) = Fh (6)

where Ml, Cl, and Gl are the unknown mass, damper, and
spring matrices of the human limb, respectively, and ẍdl, ẋdl,
and, xdl form the trajectory of the human’s hand, planned
in the human subject’s central nervous system. The term Fh

represents the force exerted by the human limb on the object,
which tends to zero when the actual trajectory converges to
the desired one.

Similarly to the robot’s case, we may express the afore-
mentioned dynamic model (6) with respect to the object’s
coordinates, invoking the kinematic relations (1)-(3), as fol-
lows:

Mol (ẍdl − ẍo)+Col (ẋdl − ẋo)+Gol (xdl − xo) = −JT
olFl

(7)
where Fl = −Fh represents the force exerted on the human’s
limb, Jol is the Jacobian from the human’s hand to the
object’s center of mass (2), and the unknown matrices Mol,
Col, Gol are expressed in the same way as in (5).

D. Object Dynamics

Under the assumption that the commonly grasped object
is rigid (i.e., no deformations take place under the action of
the applied forces by the human and the robot) the following
rigid body dynamics holds:

Mo(xo)ẍo + Co(xo, ẋo)ẋo +Go = Fo (8)

where Mo, Co, Go model the inertial, coriolis and gravity
effects and the force Fo exerted on the object is computed
as:

Fo = −JT
olFl − JT

ofFf = −GF (9)

with G =
[

JT
ol, J

T
of

]

denoting the grasp matrix of the overall

configuration and F =
[

FT
l , FT

f

]T

.

E. Problem Statement

In a conventional robot task, the desired trajectory is a pri-
ori known and available in the control design. Alternatively,
in a multi-robot system under a leader-follower architecture
with known robot dynamics, the desired trajectory, which
was known exclusively to the leader, could be implicitly
conveyed to the followers as in [17]. However, in a human-
robot collaboration task, the desired trajectory is exclusively
determined by the human and thus cannot be considered in
the robot control design. Therefore, an estimate xdf of the
desired trajectory profile at the follower’s side should first
be designed and subsequently an impedance control approach
should be adopted such that the robot arm is controlled to be
compliant to the force exerted by the human. Consequently,
considering the force exerted on the object (8)-(9) by the

human, the robot arm dynamics with respect to the object’s
coordinates (5) should be governed by an impedance model:

Md(ẍo−ẍdf )+Cd(ẋo−ẋdf )+Gd(xo−xdf ) = −JT
olFl (10)

where Md, Cd, Gd are the desired inertia, damping, and
stiffness matrices, respectively.

III. CONTROL METHODOLOGY

The aforementioned desired impedance model suggests
that the actual position of the object xo is refined according
to the interaction force −JT

olFl. Equivalently, the human will
feel like moving an object with inertia Md, damping Cd, and
stiffness Gd. In this paper, xdf will be designed to change
according to the motion intention of the human through an
appropriately selected robust estimation law to be described
in the sequel. Subsequently, an adaptive control scheme will
be developed to impose the desired impedance model (10),
despite the uncertainty in the robot dynamics.

A. Estimation law

In order to achieve the desired impedance behaviour,
the estimation law should not only estimate the object’s
desired trajectory profile xdl (t), but also compensate for
acceleration residuals, since acceleration measurements are
not available. In this respect, we relax the specification on
asymptotic estimation by adopting a robust prescribed per-
formance estimator that guarantees ultimate boundedness of
the estimation error e(t) = xo(t)−xdf (t). The mathematical
representation of prescribed performance for each element
of e (t) = [e1 (t) , e2 (t) , . . . ]

T is given by the following
inequalities:

−ρj (t) < ej (t) < ρj (t) , ∀t ≥ 0 (11)

where ρj (t) denotes the corresponding performance func-
tion that encapsulates the desired transient and steady state
performance specifications (e.g., convergence rate, maximum
steady state error). A candidate exponential performance
function may be defined by:

ρj(t) = (ρj,0 − ρj,∞)e−st + ρj,∞ (12)

where the constant s dictates the exponential convergence
rate, ρj,∞ denotes the ultimate bound at the steady state and
ρj,0 is chosen to satisfy ρjo > |ej (0)|. Hence, following
the prescribed performance control methodology [18], the
estimation law is designed as follows:

ẋdfj = kj ln

(

1+
ej(t)

ρj(t)

1−
ej(t)

ρj(t)

)

−
ej(t)
ρj(t)

ρ̇j(t), kj > 0 (13)

from which the follower’s estimate xdfj (t) is calculated via
a simple integration. Moreover, we may calculate the desired
acceleration signal by:

ẍdfj =

(

2kj

1−
(

ej (t)

ρj (t)

)2 − ρ̇j(t)

)

ėj(t)ρj(t)−ej(t)ρ̇j(t)

ρ2
j (t)

−
ej(t)
ρj(t)

ρ̈j(t)

(14)

by simply differentiating (13). with respect to time
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Theorem 1: Consider the error e (t) = xo(t) − xdf (t),
where xo (t) and xdf (t) denote the object’s actual posi-
tion/orientation and the estimate of the desired trajectory at
the follower’s side respectively. Given a smooth and bounded
desired trajectory xdl (t) with bounded derivatives as well
as the appropriately selected performance functions ρj (t)

for each element of e (t) = [e1 (t) , e2 (t) , . . . ]
T that satisfy

|ej (0)| < ρj (0) and incorporate the desired transient and
steady state performance specifications, the estimation law
(13) guarantees that |ej (t)| < ρj (t) , ∀t ≥ 0.

Proof: The proof follows identical arguments for each
element of e (t). Hence, let us define the normalized error:

ξj =
ej(t)
ρj(t)

. (15)

The estimation law (13) may be rewritten as a function of
the normalized error ξj as follows:

ẋdfj = kj ln
(

1+ξj
1−ξj

)

− ξj ρ̇j(t). (16)

Differentiating ξj with respect to time and substituting (16),
we obtain:

ξ̇j = hj (t, ξj) =
ẋoj(t)−kj ln

(

1+ξj

1−ξj

)

ρj(t)
. (17)

We also define the non-empty and open set Ωξj = (−1, 1). In
the sequel, we shall prove that ξj (t) never escapes a compact
subset of Ωξj and thus the performance bounds (11) are met.
The following analysis is divided in two phases. First, we
show that a maximal solution exists, such that ξj (t) ∈ Ωξj

∀t ∈ [0, τmax), and subsequently we prove by contradiction
that τmax is extended to ∞.

Phase A: Since |ej (0)| < ρj (0), we conclude that
ξj (0) ∈ Ωξj . Additionally, owing to the smoothness of: a)
the object’s trajectory and b) the proposed estimation scheme
(13) over Ωξj , the function hj (t, ξj) is continuous for all
t ≥ 0 and ξj ∈ Ωξj . Therefore, the hypotheses of Theorem
54 (pp.476) in [19] hold and the existence of a maximal
solution ξj (t) of (17) on a time interval [0, τmax) such that
ξj (t) ∈ Ωξj , ∀t ∈ [0, τmax) is ensured.

Phase B: Notice that the transformed error signal:

εj (t) = ln
(

1+ξj(t)
1−ξj(t)

)

(18)

is well defined for all t ∈ [0, τmax). Hence, consider the
positive definite and radially unbounded function Vj =

1
2ε

2
j .

Differentiating with respect to time and substituting (17), we
obtain:

V̇j =
2εj

(1−ξ2j )ρj(t)
(ẋoj (t)− kjεj) (19)

Owing to the fact that 1
1−ξ2j

> 1, ∀ξj ∈ Ωξj , ρj (t) > 0, ∀t ≥

0, and |ẋoj(t)| is assumed bounded by an unknown positive
constant Ūj , we conclude that V̇j < 0 when |εj (t)| >

Ūj

kj

and consequently that:

|εj (t)| ≤ ε̄j = max
{

|εj (0)| ,
Ūj

kj

}

, ∀t ∈ [0, τmax) . (20)

Thus, invoking the inverse of (18), we get:

−1 < e
−ε̄j−1

e
−ε̄j+1

= ξ
j
≤ ξj (t) ≤ ξj =

e
ε̄j−1

e
ε̄j+1

< 1. (21)

Therefore, ξj(t) ∈ Ω
′

ξj
=
[

ξ
j
, ξj

]

, ∀t ∈ [0, τmax), which
is a nonempty and compact subset of Ωξj . Hence, assuming
τmax < ∞ and since Ω

′

ξj
⊂ Ωξj , Proposition C.3.6 (pp. 481)

in [19] dictates the existence of a time instance t
′

∈ [0, τmax)

such that ξj

(

t
′

)

/∈ Ω
′

ξj
, which is a clear contradiction.

Therefore, τmax is extended to ∞. As a result, all closed loop
signals remain bounded and moreover ξj (t) ∈ Ω

′

ξj
⊂ Ωξj ,

∀t ≥ 0. Finally, from (15) and (21), we conclude that:

−ρj (t) < ξ
j
ρj (t) ≤ ej (t) ≤ ξjρj (t) < ρj (t)

for all t ≥ 0, which completes the proof.
Remark 1: The proposed estimation scheme is more ro-

bust against desired trajectory profiles with non-zero accel-
eration than previous works presented in [12]–[14]. The only
necessary condition concerns the smoothness and bounded-
ness of the desired trajectory. In this sense, our method guar-
antees bounded closed loop signals and practical asymptotic
stabilization of the estimation errors.

B. Adaptive Impedance Control

Let us define the error e(t) = xo(t) − xdf (t), where
xdf , ẋdf , and ẍdf are calculated by (13) and (14). In this
subsection, we design an adaptive control scheme to impose
the desired impedance model (10) on the robot dynamics
(5). Thus, the control objective is to enforce limt→∞ w(t) =
0, where the error signal w(t) is constructed as w =
Mdë + Cdė + Gde + JT

olFl. However, since the interaction
force Fho = −JT

olFl between the human and the object
is not available to the robot, we exploit: a) the ultimate
boundedness of the tracking error e(t) = xo(t) − xdf (t),
b) the inertial and geometric parameters of the object, which
are assumed known, as well as c) the dynamic equation of
the object (8), to estimate it by:

F̂ho = Moẍdf + Co(xo, ẋo)ẋo +Go + JT
ofFf

Equivalently, invoking (8), we obtain:

−JT
olFl = Moẍo + Co(xo, ẋo)ẋo +Go + JT

ofFf

= Moẍdf + Co(xo, ẋo)ẋo +Go + JT
ofFf +Moë

= F̂ho +Moë

Thus, selecting Md such that M∗

d = Md − Mo is positive
definite, the error signal w becomes:

w = M∗

d ë+ Cdė +Gde− F̂ho

and consequently we get an augmented impedance error:

w̄ = Kfw = ë+Kdė+Kpe−Kf F̂ho (22)

where Kf = M∗

d
−1, Kp = KfGd, and Kd = KfCd. We

also choose two positive-definite matrices Λ and Γ such that
Λ + Γ = Kd and Λ̇ + ΓΛ = Kp and we define the filtered
force measurement ḟl+Γfl = Kf F̂ho. Thus, we may rewrite
(22) as w̄ = ë+(Λ+Γ)ė+(Λ̇+ΓΛ)e− ḟl−Γfl. Similarly
to [6], we define the auxiliary variable z as:

z = ė+ Λe− fl. (23)
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Hence, the augmented impedance error becomes:

w̄ = ż + Γz (24)

which is a stable low pass filter. Therefore, if we achieve
limt→∞ z(t) = 0, then the initial control objective is readily
met, i.e., limt→∞ w(t) = 0. In this respect, let us define the
augmented reference variable:

ẋr = ẋdf − Λe+ fl. (25)

Hence, (23) and (25) immediately result in:

z = ẋo − ẋr (26)

from which (5) becomes:

Mof ż+Cof z =

JT
ofUf + JT

ofFf − (Mof ẍr + Cof ẋr +Gof ) .

Finally, invoking Property 3, we arrive at the open loop
dynamics:

Mof ż+Cofz = JT
ofUf +JT

ofFf −Y (qf , q̇f , ẋr, ẍr)θ. (27)

Therefore, we design the following impedance control
scheme:

Uf = −Ff + J−T
of

(

Y (qf , q̇f , ẋr, ẍr)θ̂ −Kz
)

(28)

where K > 0 is a positive definite gain matrix and the
estimate θ̂ of the unknown parameters θ are provided by
the update law:

˙̂
θ = −γY T (qf , q̇f , ẋr, ẍr)z (29)

with γ > 0.
Theorem 2: Consider the robot dynamics (4) and the

desired impedance model (10). The control scheme (28) with
the adaptive law (29) guarantees limt→∞ z(t) = 0 and the
boundedness of all signals in the closed loop system.

Proof: Consider the following Lyapunov function can-
didate:

V =
1

2
zTMofz +

1

2γ
θ̃T θ̃,

where θ̃ = θ̂−θ denotes the parametric error. Differentiating
with respect to time we obtain:

V̇ =
1

2
zT Ṁofz + zTMof ż +

1

γ
θ̃T

˙̂
θ.

Invoking Property 2 and substituting the adaptive law (29)
and the control law (28) in the dynamics (27), we get:

V̇ = −zTKz ≤ 0 (30)

Hence, we deduce z, θ̃ ∈ L∞. Moreover, from the defi-
nition of z in (23), we conclude that xo, ẋo ∈ L∞, and
consequently ẋr, ẍr ∈ L∞. Furthermore, employing (27),
we arrive at ż ∈ L∞. Therefore, integrating both sides of
(30) leads to

V (t)− V (0) ≤ −

∫ t

0

zT (τ)Kz(τ)dτ (31)

Object

Human Limb

RobotLoad Cell

Reference Point

Fig. 1. The experimental setup.

Thus,
∫ t

0 z
T (τ)Kz(τ)dτ is bounded, which results in z ∈

L2. Finally, Barbalat’s Lemma leads to z → 0 as t → ∞,
since z ∈ L2 and ż ∈ L∞, which completes the proof.

Remark 2: It should be noted that the only information
needed on-line to implement the developed scheme concerns
the measurements acquired exclusively by the robot’s sensor
suite (i.e., force, position and velocity). Regarding the control
parameter tuning notice that ρj,∞ can be set arbitrarily small
to a value reflecting the resolution of the measurement de-
vice, thus achieving practical convergence of the estimation
and tracking errors to zero. Moreover, the transient response
of the estimation depends on both the convergence rate of the
performance functions ρj (t), that is directly affected by the
parameter s, as well as the impedance control gain matrix
K in (28).

IV. EXPERIMENTS

The experimental evaluation of the proposed method was
carried out in one degree of freedom using a KUKA youBot
arm manipulator. Specifically, the manipulator was initialized
in the configuration shown in Fig.1 and was kept fixed
during the experiments. Only the motion of the first (base)
joint was considered under torque control mode. A Phidgets
micro load cell (0-780g) was mounted between the end
effector and the object in order to measure the interaction
force. Throughout the experiment, four subjects were asked
to move the object keeping track of a reference trajectory
that was displayed on a monitor below the manipulator (see
Fig.1). The experiment was carried out 5 times at 3 different
speed profiles (slow, normal, fast) for each subject. It should
be noted that the reference trajectories were chosen according
to the minimum-jerk profile to maintain a resemblance with
the physical human motion. Finally, the parameters of the
proposed scheme were selected as M⋆

d = 0.01, Gd =
0.1, Cd = 0.2,K = 0.9, γ = 0.1 and Λ(0) = 0.5.

The results revealed that all subjects were able to track
the reference trajectory without difficulty and independently
of the speed profile while the interaction with the object was
entirely natural. The tracking response illustrated in Fig.2 is
indicative of the method’s performance. Notice however that
the steady state position errors appear due to the fact that
the subject’s decision for the final position was influenced
by the angle of view from above the monitor (see Fig.1).
The statistical verification of the aforementioned statement
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0 10 20 30 40 50 60 70

Time[s]

-1

-0.5

0

0.5

1

1.5

2

2.5

E
ff

o
rt

[N
m

]

Robot Effort [Nm]
Human Effort [Nm]
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indicative trial. Notice that the human is less than
the robot effort for at least an order of magnitude
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Fig. 4. The statistical illustration of the results
for 4 subjects carrying out a tracking task 5 times
for 3 different speed profiles (in total 60 trials).

in Fig.4 shows that the average absolute tracking error for
all subjects and speed profiles has a mean value less than 8
degrees, which also encapsulates the human’s tracking ability
on a moving reference which in general is not negligible. In
addition, the variance is around 0.78 indicating independence
over different subjects and speed profiles.

The effort shared between the robot and the human is
also effectively addressed. The human effort is reduced
significantly over an order of magnitude compared to the
robot’s effort (see Fig.3). Notice that the statistical re-
sults of the human to robot effort ratio correspond to a
mean value of 0.075 (more than an order of magnitude
reduction) while the small variance confirms independence
over subjects and speed profiles. Finally, a short video of
the aforementioned experimental study can be found in
https://vimeo.com/240159921.

V. CONCLUSIONS

In this work, a framework to deal with the emerging
field of collaborative object manipulation through physical
human-robot interaction is developed. A prescribed perfor-
mance estimator was successfully employed for the motion
intension estimation alongside with an adaptive impedance
controller to drastically decrease the human’s effort. The
robot’s position, velocity and force measurements consist the
only sensing needed online for the controller’s implementa-
tion. The experimental verification of the proposed method
sets a new starting point for further research and extensive
evaluation on mobile manipulator systems as well as multiple
robotic agent scenarios.
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