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Abstract— In this work, we consider the problem of robot
navigation, under spatial and temporal constraints, modeled as
Metric Interval Temporal Logic (MITL) formulas. We intro-
duce appropriate control schemes, driven by time-dependent
vector fields, that satisfy both the problems of (a) entering an
arbitrary neighborhood of the workspace within a given time
interval, and, (b) avoiding collision with any given obstacle. We
model the problems (a) and (b) as MITL formulas, defined upon
a specific class of atomic propositions, and proceed in building
more complex MITL expressions that can be decomposed into
a conjunction of the former formulas. Finally, we propose a
way to generate a hybrid automaton, whose execution satisfies
the given MITL formula, by appropriately composing the
control schemes. We validate our methodology via a numerical
simulation.

I. INTRODUCTION

Motion and task planning constitute a fundamental prob-
lem in robotics, and still remain an active research topic
in many respects. Many efficient approaches have been
proposed, ranging from standard artificial intelligence, and
temporal logic planning methods [1], [2], to methods based
on artificial potential functions [3], [4], [5].

However, complex planning objectives, incorporating spa-
tial and temporal constraints, are becoming all the more
essential in robot navigation. For this reason motion planning
under timed temporal logic has been recently studied [6], [7],
[8]. In [6], the navigation problem is formulated as a mixed-
integer optimization problem while, in [7] the system is
discretized and approximated by a complex timed automaton,
which, in turn, is analyzed be model checking tools.

On the other hand, methods based on the closed-loop
evaluation of vector fields [3], [4], [9], although popular
amongst researchers – owing to their low complexity, and
their ability to simultaneously tackle both the motion plan-
ning and control problems – they are not able to handle
temporal constraints. However, the authors in [10] and [11]
recast the aforementioned problem by requiring that a robot
be driven to a predefined neighborhood of the desired con-
figuration in predetermined time. They proposed a novel
vector field that ensures obstacle avoidance and facilitates the
use of the Prescribed Performance Control technique [12],
[13] to impose predetermined convergence to the desired
configuration, thus resulting in a time-varying vector field
planner.
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In order to tackle timed tasks in real-time while avoiding
the increased computational complexity of timed temporal
logic, the authors in [14] propose the construction of a hybrid
automaton [15] that enables the decoupling of the navigation
problem and the task sequencing. The hybrid automaton
consists of appropriate control schemes that change subject
to certain events, created by the sequence generator.

In this work, we consider the problem of real-time
robot navigation in sphere world configuration spaces,
which can be extended to generalized sphere worlds, upon
global knowledge of the environment. We introduce a time-
dependent vector field function, which results in a prescribed
performance control scheme as defined in [12], such that the
robot is driven from any initial configuration to an arbitrary
neighborhood of the workspace within a given time interval.
Additionally, we borrow from [10], and define a vector field
driven control scheme, such that, collision avoidance with
any given obstacle is established. We introduce a class of
atomic propositions to describe the above main problems
as MITL formulas, and proceed in building more complex
MITL expressions that can be decomposed into these. Fi-
nally, we propose a way to generate a hybrid automaton,
whose execution satisfies the given MITL formula, by appro-
priately composing the control schemes associated with the
two main formulas. The proposed methodology is guaranteed
to satisfy the MITL specifications, and is validated by a non-
trivial numerical simulation.

II. PRELIMINARIES

A. Workspace and Robot Kinematics

We consider a point robot1 operating in a bounded
workspace W ⊂ Rn with n ∈ N≥2 and denote its position
by x ∈W. The workspace is assumed to be an open ball
centered at the origin

W, {q ∈ Rn : ‖q‖< rW} (1)

where rW ∈ R>0 is the workspace radius. The workspace
can be populated with m ∈ N closed sets Oi, i ∈ J , N≤m,
corresponding to obstacles. In particular, each obstacle i ∈ J

is a ball centered at pi with radius ri ∈ R>0,

Oi , {q ∈W : ‖q−pi‖ ≤ ri}, ∀i ∈ J. (2)

Assumption 1. The obstacles are assumed to be static,
i.e. pi and ri do not depend on time, and the free space
F ,W \ ⋃

i∈J
Oi is assumed to be a sphere world, i.e., each

1Treating a robot with volume can be achieved by “transferring” its
volume to the other workspace entities and considering it as a point.
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obstacle Oi is contained in workspace W and the obstacle
sets are pairwise disjoint. This assumption will simplify
further analysis, but can be alleviated as shown in [9], [11].

Assumption 2 (Single Integrator Kinematics). The robot
kinematics are assumed to be given by the first order
holonomic kinematic model

ẋ = u (3)

where x(0) = x0 ∈W and u ∈U ⊆ Rn.

B. Metric Interval Temporal Logic (MITL)

Definition 1. An atomic proposition π : W → {>,⊥} is
a statement about the system variables (x) that takes the
Boolean constant True(>) or False(⊥) for some given
values of the state variables.

Definition 2. The syntax of MITL formulas are defined
according to the following grammar rules:

φ ::=> | π | ¬φ | φ1∧φ2 | φ1UIφ2,

where I ⊆ [0,∞] is an interval with end points in Q≥0∪{∞},
π is an atomic proposition, and > and ⊥(= ¬>) are the
Boolean constants true and f alse, respectively.

Definition 3. The semantics of an MITL formula φ is
recursively defined over a trajectory xt as:
xt |= π iff π(xt) =>
xt |= ¬π iff π(xt) =⊥
xt |= φ1∧φ2 iff xt |= φ1 and xt |= φ2
xt |= φ1UIφ2 iff ∃s ∈ I s.t. xt+s |= φ2 and ∀ s′ ≤ s, xt+s′ |= φ1.

Other Boolean operators can also be expressed [16], and
the following MITL operators of special interest can be
defined:
• ♦Iφ ≡ >UIφ meaning that φ will eventually become

true within the time interval I, and
• �Iφ ≡ ¬♦I¬φ meaning that φ is always true for the

time interval I.

C. Hybrid Automaton

A Hybrid Automaton is a dynamical system that describes
the evolution in time of the values of a set of discrete and
continuous variables [14], [15].

Definition 4 (Hybrid Automaton). A hybrid automaton H
is an eleven tuple H = (Q,X ,E,U, f ,δ , Inv,guard,ρ,q0,x0),
where
• Q is a set of discrete states or modes;
• X is a set of continuous state space (normally X =Rn);
• E is a finite set of events;
• U is a set of admissible controls (normally U ⊆ Rm);
• f : Q×X×U → X is a vector field;
• δ : Q×X×E→Q is a discrete state transition function;
• Inv⊆Q×X is a set defining an invariant condition (also

called domain);
• guard ⊆Q×Q×X is a set defining a guard condition;
• ρ : Q×Q×X×E→ X is a reset function;
• q0 is an initial discrete state;
• x0 is an initial continuous state.

III. SAFE NAVIGATION IN PRESCRIBED TIME

In this section, we deal with the problem of navigation
under temporal and spatial constraints, and in particular with
the two main specifications met in the problem, i.e. within a
given time interval, (a) enter a predefined neighborhood of
the workspace, and (b) avoid any obstacles. We formulate
(a) and (b) as MITL expressions, by introducing a set P

of propositions that describe the presence of the robot in a
certain area of the workspace:

Definition 5. The set P is a set of atomic propositions p,
each described by a pair of parameters (xp,rp) ∈W×R≥0,
which describe the presence of the robot in a predefined
neighborhood of a point xp ∈W, i.e.,

if p ∈ P then

p(x) =>⇔
∥∥x−xp

∥∥≤ rp.

In what follows, we propose control laws, driven by
appropriately defined time-dependent vector fields, such that
for p∈P, the MITL expressions φa =♦J p, which states that
“eventually within a time interval J enter an area of W”, and
φb =�I¬p, which states that “always on the time interval I
avoid an area of W”, are satisfied.

A. Navigation within given time interval

Consider the satisfiability problem:

Problem 1 (Navigation within a given time interval). Let
x(t)∈W, t ∈ [0,τp] be a trajectory satisfying the kinematics
(3). Then the problem of navigating from x(0) to a predefined
neighborhood of W within a given time interval J = [0,τp],
can be formulated as:

x0 |= ♦J p
s.t. p = p(xp,rp) ∈ P

J =
[
0,τp

]

x0 , x(0) ∈W,

which states that
∥∥x(t)−xp

∥∥≤ rp for some t ∈ [0,τp].

Consider also the following problem studied in [10]:

Problem 2 (Prescribed Time Scale Navigation Problem).
Assuming single integrator robot kinematics,

ẋ = u

and for any pair of initial and final configurations
(x0,xd) ∈W2, and any pair (r,τ) with r,τ > 0, determine
a time-varying controller u : R≥0×W→ Rn such that the
workspace space W is forward invariant and

‖x(t)−xd‖< r, ∀t ≥ τ. (4)

Intuitively, equation (4) means that by time τ the robot
will have entered a ball of radius r centered at the desired
configuration, and remain inside it thereafter.

Then, unraveling the definitions, we have that:

Proposition 1. A solution u, of Problem 2 yields a closed-
loop trajectory x(·), such that Problem 1 is satisfied for
(xp,rp,τp) = (xd ,r,τ).
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As discussed in [10], we adopt the notion of prescribed
performance control technique [12], [13], such that

γ(x) = ‖x−xd‖2 < ρ(t), ∀t ∈ R≥0 (5)

where ρ is a designer-specified, smooth, bounded and de-
creasing function of time, here

ρ(t) = (ρ0−ρ∞)e−l t +ρ∞

satisfying ρ0 > γ(x0), ρ∞ < r2, l = l(r,τ)≥− 1
τ ln
(

r2−ρ∞
ρ0−ρ∞

)
.

The proposed controller is then defined as

uγ(t,x) =−
(

kε(ξ )+
1
2

α(t)
)
(x−xd), k > 0 (6)

where ε(ξ ) , T (ξ ) = ln
(

1
1−ξ

)
, ξ ∈ R<1, and α(t) ,

− ρ̇(t)
ρ(t) > 0, and can be expressed as uγ =−∇Uγ where

Uγ (t,x) =
1
2

[(
k+

α(t)
2

)
γ(x)+ kε(t,x)(γ(x)−ρ(t))

]
, k > 0

(7)

Proposition 2. The control law uγ defined in (6) is a solution
to Problem 2.

Proof. The detailed proof is given in [10].

B. Obstacle Avoidance

Consider the satisfiability problem:

Problem 3 (Obstacle Avoidance). Let x(t)∈W, t ∈ [0,τp] be
a trajectory satisfying the kinematics (3). Then the problem
of not entering a predefined neighborhood of W throughout
a given time interval J = [0,τp], can be formulated as:

x0 |=�I¬p,
s.t. p = p(xp,rp) ∈ P

J =
[
0,τp

]

x0 , x(0) ∈W\{q ∈W : ‖q−xp‖ ≤ rp}

which states that
∥∥x(t)−xp

∥∥> rp for all t ∈ [0,τp].

Consider also the following problem:

Problem 4 (Obstacle Avoidance). Assuming single integra-
tor robot kinematics,

ẋ = u

and for any obstacle Oi , {q ∈W : ‖q− pi‖ ≤ ri}, i ∈ J,
any initial configuration x0 ∈ Fi ,W\Oi, and any τ > 0,
determine a time-varying controller u : R≥0×Fi→ Rn such
that the free space Fi is forward invariant.

Intuitively, Fi being forward invariant means that for every
t ∈ [0,τ] the robot will avoid obstacle Oi.

Proposition 3. A solution u, of Problem 4 yields a closed-
loop trajectory x(·), such that Problem 3 is satisfied for
(xp,rp,τp) = (pi,ri,τ).

We adopt the vector field βi(x) =
inf
{
‖q−pi‖2 : q ∈ S(x)

}
, i ∈ J, introduced in [10], where

S(x) , {q ∈ Rn : q = (1−λ )x+λxd , λ ∈ [0,1]} ⊂W, with

xd ∈ Fi being a desired configuration, to define the feedback
law

uβi(x),
σi,δ (x)
di(x)

(
∇βi(x)+1Mi(x)(x−xd)

⊥
)

(8)

where di(x) = ‖x−pi‖2 − r2
i , σi,δ (x) : R → [0,1] are C1

switches that make the effect of the obstacle Oi lo-
cal, as defined in [10], and the term 1Mi (x−xd)

⊥,
where (x − xd)

⊥ denotes a vector normal to x − xd ,
and 1Mi denotes the indicator function of the set
Mi , {q ∈W\{xd} : q = pi +µ(pi−xd), µ ∈ R≥0}, intro-
duces a discontinuity necessary to prevent the robot from
remaining in the set Mi.

Proposition 4. The control law uβi defined in (8) is a solution
to Problem 4.

Proof. The detailed proof is given in [10].

C. Composition of the proposed controllers

In this section we simultaneously investigate the problems
of navigation and obstacle avoidance in prescribed time, by
appropriately composing the controllers defined in (6), and
(8).

Consider the satisfiability problem:

Problem 5 (Safe navigation in prescribed time). Let x(t) ∈
W, t ∈

[
0, t f

]
be a trajectory satisfying the kinematics (3),

and Oi , {q ∈ W : ‖q− pi‖ ≤ ri}, ∀i ∈ J, represent the
obstacles of the workspace W, as defined in (2). Then
the problem of safe navigation in prescribed time can be
formulated as:

x0 |= (♦J p)∧
(
∧

i∈J
�I¬pi

)

s.t. p = p(xp,rp) ∈ P

pi = p(xi,ri) ∈ P, i ∈ J

J = [0,τ] , I =
[
0, t f

]
, τ ≤ t f

x0 , x(0) ∈W\
⋃

i∈J
Oi

Then it follows from the work of Vrohidis et. al in [10]
that, given the controllers uγ and uβi , i ∈ J as defined in (6),
and (8), the following proposition holds

Proposition 5. The controller

u(t,x), uγ(t,x)+uβ (x) (9)

where

uβ (x),∑
i∈J

uβi(x) (10)

along with system (3), yields x(t), t ∈ I that satisfies Problem
5, for (xp,rp) = (xd ,r), and (xi,ri) = (pi,ri), ∀i ∈ J, as long
as the obstacle sets are pairwise disjoint, i.e., Oi ∩O j =
/0, for all i, j ∈ J, i 6= j, and ‖pi− p j‖ > ri + r j + 2r̄, ∀i, j ∈
J, i 6= j.
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IV. COMPLEX MITL EXPRESSIONS IN ROBOT
NAVIGATION

In this section, we investigate more complex MITL ex-
pressions that are useful in robot navigation, and can be
decomposed into a conjunction of the simpler formulas
φa =♦J p and φb =�I¬p as defined in Section III. Using the
controllers uγ and uβi , i∈ J defined in (6), and (8), we define
time-varying control schemes, modeled as hybrid automata
(II-C), such that the original MITL expressions are satisfied.

A. Task Execution

Because of our adherence to the set of atomic propositions
P (Definition 5), some MITL expressions become indifferent
in robot navigation applications. For example, given the robot
kinematics (3), the formula �I p = >, p ∈ P, is trivially
satisfied by u≡ 0 if x(0) |= p, or not at all if x(0) 2 p.

In this regard, it would be useful to request that the robot,
once it is close to a desired configuration, execute a specific
task, e.g. move in a certain way or grasp an object. We
describe the execution of a task as an atomic proposition
q belonging to the following set Q:

Definition 6. The set Q is a set of atomic propositions q, each
described by a pair of parameters (xq,rq), and a function fq :
R≥0×Cn[0,∞)×W×R>0→W which describe the presence
of the robot in a predefined neighborhood of a point xq ∈W,
and the execution of a given task, respectively, i.e.,

i f q ∈ Q then

q(x) =>⇔
{∥∥x−xq

∥∥≤ rq

fq(t,x(·),xq,rq) = 0

where t denotes time, x denotes the position of the robot at
the given time, and x(·) ∈ Cn(R) denotes the trajectory of
the robot as a function of time.

Assumption 3. We assume that every atomic proposition
q ∈ Q used, is associated with a time interval I = [0, t f ] and
a controller uψ(·) (that may depend on the function x(·)),
such that

ẋ(t) = uψ(t)⇔
{∥∥x(t)−xq

∥∥≤ rq

fq(t,x,xq,rq) = 0
, t ∈ I

i.e., φq = �Iq is satisfied, provided that
∥∥x(0)−xq

∥∥ ≤ rq.
In other words, we request that the task can be executed by
a closed loop system defined by the designer of the motion
planning specifications, and ensures that

∥∥x−xq
∥∥≤ rq will

always hold in I.

Therefore, in view of Definition 6, the expression

♦J�Iq, q ∈ Q

now takes the meaning that within time interval J = [0, tJ ],
the robot will have entered an area of xq ∈W, and from
that time, say τ ∈ J, and until τ + |I|, where |I| = ∫

t∈I dt
is the duration of I, the robot will be executing the task
fq(t,x,xq,rq) = 0. Noting that Q reduces to P for the trivial

ẋ = 0

ṫ = 1

I

ẋ = up
γ

ṫ = 1

t ≤ tJ −|I|

♦[0,τJ ]p

ẋ = uq
ψ

ṫ = 1

t ≤ τ + |I|

�[τ,τ+|I|]q

t = 0

‖x−xp‖ ≤ rp

→ τ :=t

t > τ + |I|

Fig. 1. A hybrid automaton satisfying the expression φea = ♦J�Iq, q ∈
Q, J = [0, tJ ]. Note that φea can, equivalently, be written as φea = ♦[0,τJ ]p∧
�[τ,τ+|I|]q where τJ = tJ −|I|], τ = min{t ∈ [0,τJ ] : x(t) |= p}.

choice of fq(t,x,xs,rq)≡ 0, i.e. when there is no additional
task to be executed, we get the following useful relation:

♦J�Iq≡ ♦[0,τJ ]p∧�[τ,τ+|I|]q (11)

where τJ = tJ−|I|, τ =min{t ∈ [0,τJ ] : x(t) |= p}, and p∈P
and q ∈ Q are associated by

{
xq,rq

}
=
{

xp,rp
}

.
It follows from (11) and Assumption 3 that

Proposition 6. The expression

φea = ♦J�Iq, q ∈ Q, J = [0, tJ ]

is satisfied by x(0), if ẋ = uea, with

uea =

{
up

γ (t,x), t ∈ [0,τ]
uq

ψ(t), t ∈ [τ,τ + |I|] (12)

where τ = min{t ∈ [0,τJ ] : x(t) |= p}, τJ = tJ − |I|, up
γ is

defined as in (6) for the proposition p which is associated
with q by

{
xq,rq

}
=
{

xp,rp
}

, and uq
ψ is designed for

proposition q and is known (Assumption 3).

We can use the controller defined in (12) to construct a
hybrid automaton that satisfies the formula φea =♦J�Iq, q∈
Q, J = [0, tJ ]. Because of space limitation, we omit the formal
definition of the hybrid automaton and proceed with the usual
graphical representation in Figure 1.

Remark 1. We note that the time instance τ in (11) and
(12) is not known a priori, but results from the execution
of the system (3) with u = uea. In fact, time τ essentially
corresponds to the event x(t) |= p triggering an appropriately
defined state transition function of the hybrid automaton, as
shown in Fig. 1. As a result, such time τ may not exist at
all, in which case, the problem is not satisfiable (see Section
IV-D).

B. Precedence Constraints

It is easy to see that, by definition:

φ1UIφ2 ≡�[0,τ]φ1∧♦[0,t f ]φ2

where I =
[
0, t f

]
, φ1,φ2 are MITL formulas, and τ ∈ I is

such that τ = min{t ∈ I : x(t) |= φ2}.
An important use of the timed Until operator in motion

planning is to impose precedence constraints, i.e., a propo-
sition p1 be satisfied prior to another, p2, which is captured
in the MITL expression:

¬p2UI p1∧♦J p2 ≡ ♦I p1∧�[0,τ]¬p2∧♦[τ,tJ f ]p2 (13)

235

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on May 09,2025 at 16:16:41 UTC from IEEE Xplore.  Restrictions apply. 



ẋ = 0

ṫ = 1

I

ẋ = up1
γ +up2

β

ṫ = 1

t ≤ tI f

♦I p1 ∧�[0,τ]¬p2

ẋ = up2
γ

ṫ = 1

t ≤ tJ f

♦[
τ,tJ f

]p2

t = 0
∥∥x−xp1

∥∥≤ rp1

∥∥x−xp2

∥∥≤ rp2

Fig. 2. A hybrid automaton satisfying the expression φpr = ¬p2UI p1 ∧
♦J p2, p1, p2 ∈ P, where I =

[
0, tI f

]
, J =

[
0, tJ f

]
. Note that φpr can,

equivalently, be written as φpr = ♦I p1 ∧�[0,τ]¬p2 ∧♦[τ,tJ f ]
p2 where τ =

min{t ∈ I : x(t) |= p1}.

where I =
[
0, tI f

]
, J =

[
0, tJ f

]
, tJ f > tI f , p1, p2 ∈ P, and τ =

min{t ∈ I : x(t) |= p1} (see Remark 1).
It follows from eq. (13) and Proposition 5 that

Proposition 7 (Precedence Constraints). The expression

¬p2UI p1∧♦J p2, p1, p2 ∈ P

where I =
[
0, tI f

]
, and J =

[
0, tJ f

]
is satisfied by x(0), if

ẋ = upr, with

upr =

{
up1

γ (t,x)+up2
β (x), t ∈ [0,τ1]

up2
γ (t,x), t ∈ [τ1,τ2]

(14)

where τ1 = min{t ∈ I : x(t) |= p1}, and τ2 =
min

{
t ∈ [τ1, tJ f ] : x(t) |= p2

}
(see Remark 1), up1

γ , up2
γ are

defined as in (6) for propositions p1 and p2. respectively,
and, up2

β is defined as in (10) for J = {1}, and an obstacle
O1 defined by the parameters of proposition p2.

We can use the controller defined in (14) to construct a
hybrid automaton that satisfies the formula φpr =¬p2UI p1∧
♦J p2, p1, p2 ∈ P. Due to space limitation, we only provide
the graphical representation in Figure 2.

C. A complex example
Consider the following motion planning specification:
“Until time tu, enter the sphere {x ∈W : ‖x−xa‖ ≤ ra},

and, for time duration of ta < tu, do the task
fa(t,x,xa,ra) = 0. After this is finished (t ≤ tu),
enter the sphere {x ∈W : ‖x−xb‖ ≤ rb} before time
te > tu, and, for time duration of tb, do the task
fb(t,x,xb,rb) = 0. Meanwhile, at all times, avoid the
obstacles {x ∈W : ‖x−pi‖ ≤ ri} , i ∈ J.”

This is captured by the following MITL formula:

φ =
(
♦[0,te+tb]�[0,tb]B

q)∧
(
¬BqU[0,tu]�[0,ta]A

q)∧
(
∧

i∈J
�¬Oi

)

(15)
where ta < tu < te, Aq,Bq ∈ Q are associated with Ap,Bp ∈
P via

(
xA

p,r
A
p
)
=
(
xA

q ,r
A
q
)
, and

(
xB

p,r
B
p
)
=
(
xB

q ,r
B
q
)
, and Oi ∈

P, i ∈ J.
Following the same methodology we can write:

φ = ♦[0,tu−ta]A
p∧�[τ1,τ1+ta]A

q∧�[0,τ1+ta]¬Bp∧

♦[τ1+ta,te]B
p∧�[τ2,τ2+tb]B

q∧
(
∧

i∈J
�¬Oi

)

ẋ = 0

ṫ = 1

ẋ = uAp
γ +uBp

β +uO
β

ṫ = 1

t ≤ tu− ta

ẋ = uAq
ψ +uBp

β +uO
β

ṫ = 1

t ≤ τ + ta

ẋ =uBq
ψ +uO

β

ṫ = 1

t ≤ τ + tb

ẋ =uBp
γ +uO

β

ṫ = 1

t ≤ te

t = 0

‖x−xa‖ ≤ ra

→ τ :=t

t ≥= τ + ta

‖x−xb‖ ≤ rb

→ τ :=t

t ≥= τ + tb

Fig. 3. A hybrid automaton satisfying the expression φ =(
♦[0,te+tb]�[0,tb ]B

s)∧
(
¬BsU[0,tu ]�[0,ta ]A

s)∧
(∧

i∈J�¬Oi
)
.

where ta < tu < te, τ1 = min{t ∈ [0, tu− ta] : x(t) |= Ap}, and
τ2 = min{t ∈ [τ1 + ta, te] : x(t) |= Bp} (see Remark 1).

Finally we can construct a hybrid automaton that satisfies
the formula φ . Due to space limitation, we provide only the
graphical representation in Figure 3.

D. Limitations

At first, we note that we are not addressing a decision, or
optimization, problem, but instead propose a control scheme
that satisfies a given MITL formula. As a result, formulas
such as φ1 = ♦I(p1 ∨ p2), p1, p2 ∈ P, are not of particular
interest and cannot be handled by the given approach. We
assume that this has been taken care of by the designer of
the MITL specifications.

Secondly, we stress that, as discussed in [14], our method-
ology reduces the time-constrained navigation problem into
a scheduling problem for the generated hybrid automaton.
We generate the hybrid automaton by decomposing the
given MITL expression φ , into φ = φ1 ∧ . . .∧ φk such that
the controllers ui that make the system (3) satisfy φ are
known for each φi, i = 1, . . . ,k. In order to do that, we
address the scheduling problem, using the auxiliary variables
τi ∈ {t : x(t) |= φi} , i = 1, . . . ,k, to define φ j, j 6= i, as, for
example, in (11) and (12). It follows from the above and
from Remark 1, that the time instances τi, i = 1, . . . ,k are
not uniquely defined and may not exist. Therefore, the task
sequencing problem can be further addressed on its own,
especially under constraints on the robot dynamics, or the
control input.

V. SIMULATION RESULTS

To demonstrate the applicability of the proposed method-
ology, we simulate the hybrid automaton generated for the
MITL formula (15), as shown in Figure 3.

The workspace is defined as the open ball W , {q ∈
R2 : ‖q‖ < 15}. The parameter values are chosen such that
ta = tb = 3, tu = 10, te = 22,

(
xA

q ,r
A
q
)
=
(
xA

p,r
A
p
)
= ([0,0] ,1),

and
(
xB

q ,r
B
q
)
=
(
xB

p,r
B
p
)
= ([3,4] ,2). The parameters (pi,ri)

of the obstacles Oi, i = 1, . . . ,10 are given by ([0,5],3),
([6,3],2), ([−6,3],2), ([0,−7],3), ([6,−5],2), ([−6,−5],2),
([10,0],2), ([−10,0],2), ([3,−0.9],2), and ([−3,−0.9],2),
respectively. The task fa(t,x,xa,ra) = 0 is defined such that
the robot moves in a clockwise circular trajectory in a
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Fig. 4. Workspace and continuous solution of the hybrid automaton. Black
circles correspond to the boundary of the obstacles. The asterisk indicates
the initial configuration, and the blue circles correspond to the points xA

q and
xB

q . The coloring of the trajectory is in correspondence with the coloring of
the states of the hybrid automaton (Fig. 3).

constant distance da≤ ra = rA
q around xa = xA

q with a constant
speed of 2. This is achieved by the closed-loop control law

uAq

ψ (x) = 2
[

0 1
−1 0

]
x− xa

‖x− xa‖
,

where da = ‖x(τ)−xa‖ is the distance from xa calculated at
time τ when the controller first gets activated.

The task fb(t,x,xb,rb) = 0 is defined such that the robot
converges to xb = xB

q in finite time. This is achieved by the
closed-loop control law

uBq

ψ (x) =−kb‖x− xb‖−
1
2 (x− xb) ,

for kb = 2
3

√
2. The robot kinematics are given by (3), and

the controllers uγ and uβ are as defined in (6), and (10). The
parameter δ of (10) was set equal to 10. The parameters
of controller uγ are provided in Figure 5. The trajectory
of the closed-loop hybrid system is depicted in Figure 4.
The coloring of the trajectory is in correspondence with the
coloring of the states of the hybrid automaton (see Figure 3
for comparison). Finally, Figure 5 illustrates the satisfaction
of the temporal specifications described by the associated
MITL formula.

VI. CONCLUSION

We have considered the problem of robot navigation, under
spatial and temporal constraints, modeled as MITL formulas.
We introduced appropriate control schemes, driven by time-
dependent vector fields, and proposed a way to generate
hybrid automata, whose execution satisfies the given MITL
formulas, by appropriately composing the control schemes.
Our methodology was validated via a complex numerical
simulation. Future research efforts will be focused on the
limitations of this work discussed in Section IV-D, and in
particular on handling constraints in control input and robot
kinematics.
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Fig. 5. Temporal evolution of the distance from points xA
q and xB

q . The
coloring of the trajectory is in correspondence with the coloring of the states
of the hybrid automaton (Fig. 3).
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