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Abstract— We propose a human-robot interface based on
potentials recorded through surface Electroencephalographic
sensors, aiming to decode human visual attention into motion
in three-dimensional space. Low-frequency components are
extracted and processed in real time, and subspace system
identification methods are used to derive the optimal, in mean
squared sense, linear dynamics generating the position vectors.
This results in a human-robot interface that can be used
directly in robot teleoperation or as part of a shared-control
robotic manipulation scheme, feels natural to the user, and is
appropriate for upper extremity amputees, since it requires no
limb movement. We validate our methodology by teleoperating
a redundant, anthropomorphic robotic arm in real time. The
system’s performance outruns similar EMG-based systems,
and shows low long-term model drift, indicating no need for
frequent model re-training.

I. INTRODUCTION

Human-Robot Interfaces have been receiving increasing
attention in the last decades. In the field of neurorobotics,
scientists are focusing on systems that can identify human
intention using biosignals in the place of external devices,
such as joysticks or game pads. Surface Electromyographic
(EMG) signals, generated during muscle contraction [1],
have been widely used as control inputs in such systems,
as they directly reflect human motion intention [2], [3].

Certain limitations, such as muscle contraction inabil-
ity and sensor drifting, however, have lead to the use of
alternative inputs such as Electroencephalographic (EEG)
signals [4]. Muscle activity and motor imagery, have been
found to be related with Slow-Cortical Potentials (SCP)
and Sensory-Motor Rhythms (SMR) [5], which have been
employed in applications such as cursor control [6], virtual
helicopter control [7] and hand movement reconstruction [8],
[9].All these applications, however, suffer from low Signal-
to-Noise Ratio (SNR), due to the presence of EEG artifacts
[10], mainly caused by head and eye movement. Numerous
algorithms focus on removing these EEG artifacts, most of
them being inappropriate for real-time analysis, and, thus,
for robot-control applications. For this reason, experiments
have been quite restrictive, often requesting that the subjects
keep their eyes closed, avoid blinking, swallowing or any
kind of head movement.
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We propose the use of, possibly eye-movement-related,
EEG signals in a real-time, continuous human-robot interface
that decodes three-dimensional motion. This notion is sup-
ported by the use of similar signals in decoding the direction
of visual fixation in recent works [11], [12]. The direct use
of Electrooculography, however, is limited by large sensor
drift and the reduction of the actual field of vision of the
subject, and, to date, very few endeavors towards decoding
both direction and depth of vision have been made [13].

In this paper, low-frequency components are extracted
from potentials recorded over the user’s scalp, processed
in real time, and transformed to Cartesian coordinates of
the end-effector of a robotic arm in 3D space using a
linear time-invariant state space model. This model-based
approach is based on numerical methods for subspace-based
system identification, and is chosen over recent black-box
architectures such as deep neural networks [14] because it
allows to be directly used in sensor fusion schemes (e.g.
Kalman filtering). This results to a Human-Robot Interface
which feels natural to the user, is appropriate for upper
extremity amputees –since it requires no limb movement–
and can be used in robot teleoperation, or as part of a
shared-control robotic manipulation scheme. We validate our
methodology by teleoperating a redundant, anthropomorphic
robotic arm in real time in three different experiments. In the
first experiment, the subjects try natural reaching motions,
tracking their hand trajectory with their eyes, in the second
experiment, the subjects are asked to follow with their eyes
an object which is being moved by a second person, and, in
the third experiment, they are seated against the robotic arm,
and asked to teleoperate it by looking at the position they
want it to go.

The paper is organized as follows: Section II describes
the signal processing methods proposed for feature extrac-
tion and introduces the theory of numerical subspace-based
system identification. Section III explains the hardware and
experimental set-up, and Section IV assesses the efficacy
of the proposed interface. Finally Section V concludes the
paper.

II. METHODS

In this section, we present our feature extraction method-
ology and the realization theory for combined deterministic-
stochastic, linear time-invariant, state space models. With a
slight abuse of definition, we will denote the signals recorded
through the surface Encephalographic sensors as EEG signals
throughout the paper.
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A. EEG Signal Analysis

We identify the measurements, sampled at a frequency
fs = 500Hz, from each of the EEG sensors with a random
process Xi :N0×Ω→ R, i = 1, . . . ,K, defined in the prob-
ability space (Ω,F,P), where F := {Fn}n∈N is a filtration
with Fn = σ(Xi(k)|k ≤ n), and K is the number of sensors.

First, an IIR low-pass filter is applied to each Xi, i =
1, . . . ,K, in the time domain according to the following
difference equation:

X̂i(n) =
1
a0

(
p

∑
j=0

b jXi(n− j)−
p

∑
j=1

a jX̂i(n− j)

)
, n > p, (1)

where X̂i represents the filtered process for i = 1, . . . ,K, at
time instance n

fs
, and a j, b j are the filter coefficients for

a Butterworth filter of order p = 2 with cut-off frequency
fc = 2Hz. It is important for real-time applications that the
filters applied to the signals introduce a small group delay
τ∗g := maxω τg(ω)< 320ms, where τg(ω) =− dφ(ω)

dω
, φ(ω) =

∠H( jω), and H(z) =
∑

p
j=0 b jz− j

∑
p
j=0 a jz− j .

Remark 1. A Butterworth filter of order p = 2 with cut-off
frequency fc = 2Hz, when applied to a process sampled at
fs = 500Hz, introduces a group delay τ∗g ≤ 130ms.

Keeping only the low frequency components of the EEG
signals, preserves the ocular information, and absolves them
of the fast and non-stationary oscillations. As a result, we
make the following assumption

Assumption 1. X̂i, i = 1, . . . ,K, are ergodic and stationary
random processes.

Next, the mean value of the processes is removed, after
being recursively estimated as:

Ei(n) = Ei(n−1)+
1
n
[Xi(n)−Ei(n−1)] , n > p (2)

such that

Wi(n) = X̂i(n)−Ei(n), n > p, i = 1, . . . ,K (3)

where Ei(p+1) = X̂i(p+1). Because of the ergodicity and
stationarity assumptions, it is easy to see that Ei converges
almost surely to the ensemble average E

[
X̂i
]
, as n→∞, for

all i = 1, . . . ,K.
The spatial information and trends carried from the grid

of EEG sensors is next exploited by applying a Common-
Average Reference (CAR) spatial filter, accentuating compo-
nents with highly focal distributions [15], as follows:

Ŵi(n) =Wi(n)−
1
K

K

∑
j=1

Wj(n), n > p (4)

After the spatial filtering, an automatic channel selection
algorithm is implemented, based on the Pearson’s correlation
coefficients

ρi j :=
Cov(Ŵi,Yj)

σŴi
σY j

, i ∈ {1, . . . ,K} , j ∈ {1, . . . , l} (5)

where Cov(X ,Y ) = E [(X−E [X ])(Y −E [Y ])], σX =
E
[
(X−E [X ])2)

]
,and {Yi}l

i=1 is the set of l output position
features, as defined in Section II-B. The Algorithms reads
as follows:

• First two experiments are conducted, and n̄ data samples
of Ŵi, i = 1, . . . ,K, and Yj, j = 1, . . . , l are extracted in
each experiment;

• ρi j, i ∈ {1, . . . ,K} , j ∈ {1, . . . , l} are computed for each
experiment;

• A channel Ŵi is selected if ρi j > ρ̄ , in both experiments,
for a threshold value of ρ̄ such that there are at least two
channels correlated with each coordinate Yj, j = 1, . . . , l.

Notice that if E
[
Ŵi
]
= E [Yj] = 0, ∀i ∈ {1, . . . ,K} , ∀ j ∈

{1, . . . , l}, then ρi j = cosθi j, where θi j is the angle between
Ŵi and Yj in the n̄-dimensional sample space. The locations
of the selected channels for Subject B are shown in Fig. 1a.

Remark 2. The selected EEG channels are located mainly
on the pre-frontal (associated with eye movements) and
the occipital (associated with visual processing) lobe areas.
In some cases sensors located at the temporal lobe area
(associated with head movement and object perception and
recognition) were also selected.

At this point, Principal Component Analysis (PCA) [16]
is implemented for further dimensional reduction and noise
cancellation. The Covariance matrix Σ of Ŵ := [

{
Ŵi
}

i∈I ],
where I is the set of indices selected by the channel selection
algorithm and [{Ai}i∈I ] represents a matrix whose columns
are the vectors Ai, is pre-computed using samples from
the training data and decomposed using Singular Value
Decomposition such that:

Σ =
1

n̄−1
Ŵ TŴ =V ΛV T (6)

where, Λ is a diagonal matrix containing the eigenvalues
λi, i = 0, . . . , |I| of the symmetric matrix Σ, and V is an
orthogonal matrix (V T =V−1) whose columns are the eigen-
vectors of Σ. Then the low-dimensional representation U :=
[
{

Ûi
}m

i=0] of Ŵ is computed in real time by the projection:

U = Ŵ TV ∗ (7)

where, V ∗ is a matrix whose columns are the eigenvectors
corresponding to the largest m ≤ |I| eigenvalues of Σ. The
dimension m is selected such that the first m principal
components describe more than 95% of the total variance.

B. Kinematic Analysis

The position measurements Zi, i = 1, . . . ,3, sampled at
a frequency fs = 500Hz, correspond to each of the three
Cartesian coordinates x, y and z of the moving target,
respectively, measured from the shoulder of the user, as
shown in Fig. 1b.

The position signals are filtered with a 3rd-order, low-pass
Butterworth filter with cut-off frequency of 3 Hz, following
equation (1). Then, the filtered position signals Ŵi, i= 1, . . . ,3
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Fig. 1: (a) The locations of the selected EEG channels for
Subject B. (b) The position tracker sensors.

are mapped within the interval [−1,1] using the following
transformation f :R→ [−1,1]:

Yi = f (Ẑi) := 2
(

Ẑi−Zi

Zi−Zi

)
−1, i = 1, . . . ,3, (8)

where Zi, and Zi are the minimum and maximum values of
Ẑi, respectively, pre-computed using the training data. During
the testing phase, the reconstructed by the model coordinates
Yi are projected back to their initial space by solving equation
(8) with respect to Ẑi, i = 1, . . . ,3.

C. Subspace-based System Identification

We model the decoding from uk =
{

Ûi(k)
}m

i=0 to yk ={
Ŷi(k)

}l
i=0 as a discrete-time, linear, time-invariant, state-

space model, defined as:

xk+1 = Axk +Buk +wk

yk =Cxk + vk
(9)

where xk ∈ Rn is a hidden state vector at time instance kT ,
n is the order of the system, T is the sampling period, uk ∈
Rm is the vector of the inputs, yk ∈ Rl is the output vector,
and wk, vk represent zero-mean, Gaussian distributed, white
noise, i.e., wk ∼N(0,Q), and vk ∼N(0,R), with E

[
wvT

]
= S.

Given the input and output measurements {uk}N
k=1,

{yk}N
k=1, with N→ ∞, and the fact that these two sequences

are generated by an unknown model of the form (9), the
problem comes down to finding an optimal, in a mean
squared error sense, realization (A,B,C,D,Q,R,S) (up to
within a similarity transformation).

This system identification approach is preferred over
black-box architectures such as deep neural networks [14]
since it can model time dynamics and can be directly used
in sensor fusion schemes such as Kalman filtering.

Subspace State-Space Identification (4SID) algorithms
have several major advantages in state-space system iden-
tification [17]. At first, limited a priori parametrization is
needed, i.e. only the order of the system, the state space
matrices are not calculated in their canonical forms, which
implies that the observability (or controllability) indices do
not have to be known in advance, and there is no difference
between zero and non-zero initial states. In addition, 4SID
algorithms are non-iterative, with no non-linear optimization
parts involved, and, as a result, they do not suffer from the

typical disadvantages of iterative algorithms, e.g. not guar-
anteed convergence, local minima of the objective criterion,
and sensitivity to initial estimates.

We make use of the Numerical Algorithm for Subspace
State-Space Identification (N4SID) as proposed in [18].
We assume that {A,C} is observable, and

{
A,BQ1/2

}
is

controllable, and define the extended (i > n) observability
matrix

Γi =


C

CA
. . .

CAi−1

 (10)

the lower block triangular Toeplitz matrix

Hi =


D 0 . . . 0

CB D . . . 0
. . . . . . . . . . . .

CAi−2B CAi−3B . . . D

 (11)

and the ‘past’ and ‘future’ input and output block Hankel
matrices U0|i−1, Ui|2i−1, Y0|i−1, and Yi|2i−1, respectively, with

Za|b =


z(a) z(a+1) . . . z(a+ j−1)

z(a+1) z(a+2) . . . z(a+ j)
. . . . . . . . . . . .

z(b) z(b+1) . . . z(b+ j−1)

 , b > a

(12)
where we presume throughout the paper that j→ ∞.

In order to obtain an estimation of Γi, we introduce the
projection Zi of the future outputs onto the past and future
inputs and the past outputs, as:

Zi = Yi|2i−1

/U0|i−1
Ui|2i−1
Y0|i−1

=
[
L1

i L2
i L3

i
]/U0|i−1

Ui|2i−1
Y0|i−1

 , (13)

where A/B = ABT (BBT )−1B, which corresponds to the op-
timal prediction of Yi|2i−1 given U0|2i−1 and Y0|i−1 [17].
An important observation is that the column space of Γi,
coincides with the column space of

T :=
[
L1

i L3
i
][U0|i−1

Y0|i−1

]
, (14)

such that, after applying a Singular Value Decomposition

T =
[
U1 U2

][Σ1 0
0 0

]
V T , (15)

we can put
Γi =U1Σ

1/2
1 (16)

and identify Γi−1 as Γi with the last l rows removed.
One can show that

Zi = ΓiX̂i +HiUi|2i−1 (17)

Zi+1 = Γi−1X̂i+1 +Hi−1Ui+1|2i−1 (18)

as well as

[
X̂i+1
Yi|i

]
=

[
A
C

]
X̂i +

[
B
D

]
Ui|i +


U0|i−1
Ui|2i−1
Y0|i−1

X̂i


⊥

(19)
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hold, where X̂i is the estimation of Xi := [xi,xi+1, . . . ,xi+ j−1],
and A⊥ indicates a matrix whose row space is perpendicular
to the row space of A.

It follows that

[
Γ

†
i−1Zi+1

Yi|i

]
=

[
A H12
C H22

][
Γ

†
i Zi

Ui|2i−1

]
+


U0|i−1
Ui|2i−1

Zi
X̂i


⊥

(20)

where A† denotes the Moore-Penrose pseudo-inverse of A,
and

H12 = B−AΓ
†
i

[
D

Γi−1B

]
Γ

†
i−1Hi−1−AΓ

†
i

[
0

Hi−1

]
(21)

H22 = D−CΓ
†
i

[
D

Γi−1B

]
−CΓ

†
i

[
0

Hi−1

]
(22)

Therefore, by determining the least squares solution:[
Γ

†
i−1Zi+1

Yi|i

]
=

[
H11 H12
H21 H22

][
Γ

†
i Zi

Ui|2i−1

]
+

[
ρ1
ρ2

]
(23)

where ρ1 and ρ2 are residuals, we are in place to
• identify A =H11, C =H21;
• compute B and D by solving the linear equations (21)

and (22); and
• calculate Q, R and S by[

Q S
ST R

]
=

1
j

[
ρ1ρT

1 ρ1ρT
2

ρ2ρT
1 ρ2ρT

2

]
. (24)

III. HARDWARE AND EXPERIMENTAL SETUP

Three different experiments were conducted to assess the
proposed interface, as shown in Fig. 2. In the first round
of experiments, three right-handed subjects (Subject A, B
and C), completed a training phase, and Experiments I and
II three times. In the second round, which took place two
months after the first, Subject B was asked to repeat experi-
ment I with no re-training. In addition Subject B completed
Experiment I∗, which was a variation of Experiment I, as
well as Experiment III. The duration of the training phases
was 60s, while the testing phases lasted for 30s. The best
trials of Subject B were recorded and are shown in the
attached video.

A. Experiments I and I∗

The first experiment is designed to test the efficacy of
the proposed Human-Robot Interface, compared to existing
EMG-based interfaces, and, as a result, involves arm move-
ment. The participants are seated in a chair and instructed
to move their right arm freely in 3D space, making natural
motions as if trying to reach an object, lift it up, and bring
it back towards them (Fig. 2a). At the same time, they are
asked to track their moving hand with their eyes in a natural
way, allowing smooth motion of their head if needed. No
eye-blinking or swallowing restrictions are imposed, such
that the interface feels as natural as possible to the user.

EEG signals are recorded over the scalp of the subjects,
and their right hand’s position is tracked. EMG signals are
also recorded from 5 upper-arm muscles and are processed

with a real-time linear envelope method as described in [2]
and the references therein. Two different state-space models
are trained, using the EEG and the EMG data, respectively.
In the testing phase, a robot controller drives the robotic
manipulator replicating the motion of the human arm.

In Experiment I∗, Subject B was asked to move their right
hand freely in 3D space, while stopping at different times
and places, simulating a repeated ‘pick and place’ task. The
two different motion profiles are depicted in Fig. 3.

B. Experiments II and III

Experiments II and III are designed to test the efficacy
of the proposed interface when there is no upper limb
movement, and, as a result, no EMG data are being used.

In the second experiment (Fig. 2b), the three subjects are
asked to track a moving object with their eyes. The object
is being moved by a second person, and the robot aims to
simulate the movement that the human would do to move
the object in the same way.

In the third experiment (Fig. 2c), Subject B is placed
opposite to the robot, looking directly at the robot’s end-
effector, and they are asked to look to the place they want
the robot’s end-effector to go.

C. Hardware Setup and Robot Control

The EEG signals are recorded from a 32-sensor head cap
according to the 10-20 system (Fig. 1a), using a Biosemi
ActiveTwo device, and are decimated from f̂s = 16384 Hz to
fs = 500 Hz using an anti-aliasing, infinite-impulse response
(IIR) filter. The EMG signals are recorded with a Delsys
Bagnoli device from 5 upper-arm muscles, namely deltoid
(anterior), deltoid (posterior), deltoid (middle), pectoralis
major (clavicular head) and biceps brachii, which are mainly
correlated with the performed motion and less susceptible
to noise [1], [2]. The kinematic data are collected using
a Polhemus Liberty electromagnetic position tracker at a
sample rate of f̂s = 240Hz and are interpolated at fs =
500 Hz. All devices are connected to a personal computer
having a TCP communication with the robot’s controller at
a frequency of fr = 500Hz.

The robot used is a 7-DoF Mitsubishi PA-10 robotic
manipulator [19], the first d = 4 DoF of which are controlled
such that the robot’s end-effector follows a desired trajectory
in 3D space. For the purpose of our experiments, it suffices
to use a Jacobian pseudo-inverse controller for redundant
manipulators [20]:

q̇ = K1J+(Zd−Z)+K2(Id− J+J)(qr−q) (25)

where J+d×3 = JT (JJT )−1 is the Moore-Penrose pseudo-
inverse of the corresponding Jacobian matrix J, K1 and K2
are positive-definite weight matrices, Z and Zd are the actual
and desired position of the robot’s end-effector, q is the
vector of the angles of the four robot joints, and qr is a
reference vector defined in the joint space, such that the robot
maintains an elbow-down formation. The desired position
vector Z = [{Zi}3

i=1] is reconstructed by a model of order
n ∈ {2, . . . ,4}. For Experiment I, each coordinate Zi was
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(a) Experiment I: The subject moves their
hand in 3D space, tracking it with their
eyes. The robot replicates the motion.

(b) Experiment II: The subject follows a
moving object in 3D space. The robotic
arm follows the trajectory of the object.

(c) Experiment III: The subject is looking
at the direction they intend the robot’s
end-effector to go.

Fig. 2: Experimental Set-Up.

scaled up according to the difference of the length of the
human arm and the robotic manipulator.

IV. RESULTS

The performance of the learned state-space models is
evaluated by two different measures: the root-mean-squared
error (RMSE) and Pearson’s Correlation Coefficient (CC),
defined as:

erms,i =

√
1
n̄

n̄

∑
k=1

(
Zi(k)− Ẑi(k)

)2 (26)

ρi =
∑

n̄
k=1
(
Zi(k)−Zi

)(
Ẑi(k)− Ẑi

)
√

∑
n
k=1
(
Zi(k)−Zi

)2
∑

n
k=1

(
Ẑi(k)− Ẑi

)2
(27)

where Zi and Ẑi, i = 1, . . . ,3, are the actual and reconstructed
position trajectories of the robot’s end-effector, respectively,
and X = 1

n̄ ∑
n̄
k=1 X(k) denotes the mean value of X across the

n̄ testing samples.

A. Comparison with existing EMG-based models

The first two rows of Table I, show the mean and standard
deviation of the erms and ρ values of the proposed interface,
and the EMG-based interface proposed in [2], across all
trials for Experiment I. Although tested in limited trials, the
proposed methodology suggests greater performance, while
requiring no upper limb movement.

B. Long-term Model Drift

Model drift refers to a model’s predictive performance
degrading over time due to a change in the environment that
violates the model’s assumptions. We test the ability of the
proposed interface to maintain its performance for the same
user, after a long period of time, with no need for model
re-training. During the second round of experiments, which
took place two months after the first, Subject B was asked
to repeat the testing phases of Experiment I, for which the
state-space models had been trained in the first round. The
results are shown in Table II and suggest that the proposed
EEG-based Human-Robot Interface, as opposed to the EMG-
based, needs no frequent re-training or re-calibration.

C. Suitability for Upper-Limb Amputees

The third row of Table I, show the performance of
the proposed interface across all trials for Experiment II,
which shows no statistically significant difference from the
performance of the interface in Experiment I. This suggests
that the actual movement of the arm is not necessary, and,
therefore, the proposed interface is suitable for users with
upper extremity amputation.

Regarding Experiment III, although the system’s perfor-
mance cannot be measured, the subject reported having
actual control over the robot arm in terms of it moving in
the intended direction.

D. Complex Movements and Limitations

The coordinates of the natural human-like movements
studied in this work, are, to some extent, correlated, a
property that is exploited by the system’s architecture. In
order to test the accuracy of the learned model during more
complex motion profiles, Subject B was asked, in Experiment
I∗, to move their right hand freely in 3D space, while
stopping at different times and places, simulating a repeated
‘pick and place’ task. The results are shown in the last row
of Table I, and the two different motion profiles, along with
the reconstructed by the model trajectories for a random trial
of Subject B, are depicted in Fig. 3.

Although tested in few testing trials, the system’s per-
formance metrics show a small decrease in the accuracy
of the interface, which still remains, however, at state-of-
the-art levels. More complex motion profiles may negatively
affect the overall performance of the proposed interface and
especially the reconstruction of the depth (x-coordinate).
Further experimentation is needed to quantify this effect.

V. CONCLUSION

A human-robot interface was proposed, based on po-
tentials recorded through surface Electroencephalographic
sensors, in order to decode human visual attention into
position in space. Low-frequency potentials were used in
a subspace system identification algorithm to identify the
optimal, in mean squared sense, linear time-invariant system
generating a three-dimensional position vector in real-time.
The resulting human-robot interface feels natural to the user,
requires no limb movement, and can be used in robot teleop-
eration, or as part of a shared-control robotic manipulation
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Input Signals Data CCx CCy CCz RMSEx(cm) RMSEy(cm) RMSEz(cm)

EMG Experiment I 0.79±0.05 0.84±0.04 0.87±0.05 6.0±1.09 7.1±0.53 7.9±0.94
EEG Experiment I 0.85±0.06 0.93±0.03 0.89±0.05 3.34±0.39 5.49±1.81 6.56±2.2
EEG Experiment II 0.83±0.07 0.92±0.05 0.90±0.04 3.64±0.45 6.38±2.01 6.32±2.16
EEG Experiment I∗ 0.78±0.04 0.95±0.01 0.79±0.05 2.97±0.31 5.3±1.26 8.02±1.17

TABLE I: The decoding accuracy of the model in terms of the mean and standard deviation values of erms and ρ across all
trials and subjects for every experiment.

Input Signals CCx CCy CCz RMSEx(cm) RMSEy(cm) RMSEz(cm)

EMG 0.24±0.22 0.64±0.16 0.77±0.11 10.9±1.33 11.7±1.08 9.3±1.12
EEG 0.81±0.04 0.93±0.08 0.88±0.07 4.9±0.98 6.6±1.24 5.5±1.55

TABLE II: The decoding accuracy for Subject B in Experiment I, two months after the model training.
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Fig. 3: The actual and decoded trajectories for a random trial of Subject B in Experiment I (left) and Experiment I∗ (right).

scheme, even by upper extremity amputees. We validated our
methodology by teleoperating a redundant, anthropomorphic
robotic arm in three different real-time experiments. The
system’s performance outruns similar EMG-based systems,
and shows no need for frequent re-training for each user.

The proposed interface can potentially be combined with
a virtual reality headset in order to teleoperate a robot
in inaccessible for humans environments, or enhance the
experience of virtual computer games.
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