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Abstract: Stochastic vector quantization methods have been extensively studied in supervised and
unsupervised learning problems as online, data-driven, interpretable, robust, and fast to train and evaluate
algorithms. Being prototype-based methods, they depend on a dissimilarity measure, which is both
necessary and sufficient to belong to the family of Bregman divergences, if the mean value is used as
the representative of the cluster. In this work, we investigate the convergence properties of stochastic
vector quantization (VQ) and its supervised counterpart, Learning Vector Quantization (LVQ), using
Bregman divergences. We employ the theory of stochastic approximation to study the conditions on the
initialization and the Bregman divergence generating functions, under which, the algorithms converge
to desired configurations. These results formally support the use of Bregman divergences, such as the
Kullback-Leibler divergence, in vector quantization algorithms.
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1. INTRODUCTION

Vector quantization methods, originally proposed for data com-
pression over 30 years ago (Gersho and Gray, 2012), have been
extensively studied and used as supervised and unsupervised
learning algorithms. In addition to being interpretable, robust,
data-driven and topology-preserving algorithms (Uriarte and
Martín, 2005), they can be formulated as online, stochastic
gradient descent algorithms, sparse in the sense of memory
complexity, and fast to train and evaluate.

Because of their developed mathematical theory, they offer,
in many cases, an appealing alternative to the state-of-the-art
neural network architectures. As a result, they are still being
studied in conjunction with current neural network architectures
(Saralajew et al., 2018; Villmann et al., 2017a), and used in
standard classification problems (Villmann et al., 2017b), data
clustering (Shah and Koltun, 2018), time series and speech
analysis (Melchert et al., 2016; Wang et al., 2019), biomedical
applications (Biehl, 2017), and topological data analysis (Zielin-
ski et al., 2018). Moreover, LVQ methods have recently shown
impressive robustness against adversarial attacks, suggesting an
advantage over neural network architectures in security critical
applications (Saralajew et al., 2019).

As prototype-based learning methods, VQ and LVQ are based
on distance metrics, such as the Euclidean norm. However, the
utilization of non-standard metrics and general dissimilarity
measures, has become a topic of increasing importance in
data processing and pattern recognition, and in the case of
prototype-based learning, the family of Bregman divergences
has recently been acknowledged to play an important role
(Banerjee et al., 2005; Mwebaze et al., 2011; Villmann and
Haase, 2011). Their use as a distortion measure, is both sufficient
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and necessary for choosing the mean as a representative of a
random set, when trying to minimize the expected value of
the distortion. In addition, due to the correspondence between
exponential families and Bregman divergences, the efficiency
of soft-clustering algorithms using Expectation-Maximization
(EM) methods, and Deterministic Annealing approaches (Rose,
1998), can be greatly improved (Banerjee et al., 2005).

Batch algorithms for Vector Quantization based on the gener-
alized Linde-Buzo-Gray (LBG) algorithm (Gersho and Gray,
2012), have been shown to converge to a minimum of the average
distortion, if and only if a Bregman divergence is used as a
distortion measure (Banerjee et al., 2005). However, conver-
gence analysis of stochastic VQ and LVQ, is more involved
due to their iterative nature and the non-differentiability of the
cost functions (Bottou, 1998; Baras and LaVigna, 1991; Baras
and Dey, 1999). While differentiable approximations of the
cost functions have been introduced (Sato and Yamada, 1996;
Hammer and Villmann, 2002; Nova and Estévez, 2014)), to our
knowledge, convergence properties have only been studied when
using metrics, such as the Euclidean distance.

In this work, we focus on the convergence properties of stochas-
tic VQ and LVQ using Bregman divergences. We formulate these
algorithms as stochastic approximation algorithms (Benveniste
et al., 2012; Borkar, 2009; Bottou, 1998), and investigate the
conditions on the initialization and the Bregman divergence
generating functions, under which, the algorithms converge.
Through standard Lyapunov stability arguments, we show con-
vergence to configurations that minimize appropriately defined
objective functions. These results formally support the use of
Bregman divergences, such as the Kullback-Leibler divergence,
in vector quantization algorithms.

The rest of the paper is organized as follows: Section 2 defines
the Bregman Divergences and introduces the stochastic approx-

Convergence of Stochastic Vector Quantization and
Learning Vector Quantization with Bregman

Divergences �

Christos N. Mavridis John S. Baras

Electrical and Computer Engineering Department and the Institute for Systems
Research, University of Maryland, College Park, MD 20742 USA,

(e-mail: {mavridis,baras}@umd.edu)

Abstract: Stochastic vector quantization methods have been extensively studied in supervised and
unsupervised learning problems as online, data-driven, interpretable, robust, and fast to train and evaluate
algorithms. Being prototype-based methods, they depend on a dissimilarity measure, which is both
necessary and sufficient to belong to the family of Bregman divergences, if the mean value is used as
the representative of the cluster. In this work, we investigate the convergence properties of stochastic
vector quantization (VQ) and its supervised counterpart, Learning Vector Quantization (LVQ), using
Bregman divergences. We employ the theory of stochastic approximation to study the conditions on the
initialization and the Bregman divergence generating functions, under which, the algorithms converge
to desired configurations. These results formally support the use of Bregman divergences, such as the
Kullback-Leibler divergence, in vector quantization algorithms.

Keywords: learning algorithms, stochastic approximation, convergence proofs

1. INTRODUCTION

Vector quantization methods, originally proposed for data com-
pression over 30 years ago (Gersho and Gray, 2012), have been
extensively studied and used as supervised and unsupervised
learning algorithms. In addition to being interpretable, robust,
data-driven and topology-preserving algorithms (Uriarte and
Martín, 2005), they can be formulated as online, stochastic
gradient descent algorithms, sparse in the sense of memory
complexity, and fast to train and evaluate.

Because of their developed mathematical theory, they offer,
in many cases, an appealing alternative to the state-of-the-art
neural network architectures. As a result, they are still being
studied in conjunction with current neural network architectures
(Saralajew et al., 2018; Villmann et al., 2017a), and used in
standard classification problems (Villmann et al., 2017b), data
clustering (Shah and Koltun, 2018), time series and speech
analysis (Melchert et al., 2016; Wang et al., 2019), biomedical
applications (Biehl, 2017), and topological data analysis (Zielin-
ski et al., 2018). Moreover, LVQ methods have recently shown
impressive robustness against adversarial attacks, suggesting an
advantage over neural network architectures in security critical
applications (Saralajew et al., 2019).

As prototype-based learning methods, VQ and LVQ are based
on distance metrics, such as the Euclidean norm. However, the
utilization of non-standard metrics and general dissimilarity
measures, has become a topic of increasing importance in
data processing and pattern recognition, and in the case of
prototype-based learning, the family of Bregman divergences
has recently been acknowledged to play an important role
(Banerjee et al., 2005; Mwebaze et al., 2011; Villmann and
Haase, 2011). Their use as a distortion measure, is both sufficient

� This work was partially supported by ONR grant N00014-17-1-2622.

and necessary for choosing the mean as a representative of a
random set, when trying to minimize the expected value of
the distortion. In addition, due to the correspondence between
exponential families and Bregman divergences, the efficiency
of soft-clustering algorithms using Expectation-Maximization
(EM) methods, and Deterministic Annealing approaches (Rose,
1998), can be greatly improved (Banerjee et al., 2005).

Batch algorithms for Vector Quantization based on the gener-
alized Linde-Buzo-Gray (LBG) algorithm (Gersho and Gray,
2012), have been shown to converge to a minimum of the average
distortion, if and only if a Bregman divergence is used as a
distortion measure (Banerjee et al., 2005). However, conver-
gence analysis of stochastic VQ and LVQ, is more involved
due to their iterative nature and the non-differentiability of the
cost functions (Bottou, 1998; Baras and LaVigna, 1991; Baras
and Dey, 1999). While differentiable approximations of the
cost functions have been introduced (Sato and Yamada, 1996;
Hammer and Villmann, 2002; Nova and Estévez, 2014)), to our
knowledge, convergence properties have only been studied when
using metrics, such as the Euclidean distance.

In this work, we focus on the convergence properties of stochas-
tic VQ and LVQ using Bregman divergences. We formulate these
algorithms as stochastic approximation algorithms (Benveniste
et al., 2012; Borkar, 2009; Bottou, 1998), and investigate the
conditions on the initialization and the Bregman divergence
generating functions, under which, the algorithms converge.
Through standard Lyapunov stability arguments, we show con-
vergence to configurations that minimize appropriately defined
objective functions. These results formally support the use of
Bregman divergences, such as the Kullback-Leibler divergence,
in vector quantization algorithms.

The rest of the paper is organized as follows: Section 2 defines
the Bregman Divergences and introduces the stochastic approx-

Convergence of Stochastic Vector Quantization and
Learning Vector Quantization with Bregman

Divergences �

Christos N. Mavridis John S. Baras

Electrical and Computer Engineering Department and the Institute for Systems
Research, University of Maryland, College Park, MD 20742 USA,

(e-mail: {mavridis,baras}@umd.edu)

Abstract: Stochastic vector quantization methods have been extensively studied in supervised and
unsupervised learning problems as online, data-driven, interpretable, robust, and fast to train and evaluate
algorithms. Being prototype-based methods, they depend on a dissimilarity measure, which is both
necessary and sufficient to belong to the family of Bregman divergences, if the mean value is used as
the representative of the cluster. In this work, we investigate the convergence properties of stochastic
vector quantization (VQ) and its supervised counterpart, Learning Vector Quantization (LVQ), using
Bregman divergences. We employ the theory of stochastic approximation to study the conditions on the
initialization and the Bregman divergence generating functions, under which, the algorithms converge
to desired configurations. These results formally support the use of Bregman divergences, such as the
Kullback-Leibler divergence, in vector quantization algorithms.

Keywords: learning algorithms, stochastic approximation, convergence proofs

1. INTRODUCTION

Vector quantization methods, originally proposed for data com-
pression over 30 years ago (Gersho and Gray, 2012), have been
extensively studied and used as supervised and unsupervised
learning algorithms. In addition to being interpretable, robust,
data-driven and topology-preserving algorithms (Uriarte and
Martín, 2005), they can be formulated as online, stochastic
gradient descent algorithms, sparse in the sense of memory
complexity, and fast to train and evaluate.

Because of their developed mathematical theory, they offer,
in many cases, an appealing alternative to the state-of-the-art
neural network architectures. As a result, they are still being
studied in conjunction with current neural network architectures
(Saralajew et al., 2018; Villmann et al., 2017a), and used in
standard classification problems (Villmann et al., 2017b), data
clustering (Shah and Koltun, 2018), time series and speech
analysis (Melchert et al., 2016; Wang et al., 2019), biomedical
applications (Biehl, 2017), and topological data analysis (Zielin-
ski et al., 2018). Moreover, LVQ methods have recently shown
impressive robustness against adversarial attacks, suggesting an
advantage over neural network architectures in security critical
applications (Saralajew et al., 2019).

As prototype-based learning methods, VQ and LVQ are based
on distance metrics, such as the Euclidean norm. However, the
utilization of non-standard metrics and general dissimilarity
measures, has become a topic of increasing importance in
data processing and pattern recognition, and in the case of
prototype-based learning, the family of Bregman divergences
has recently been acknowledged to play an important role
(Banerjee et al., 2005; Mwebaze et al., 2011; Villmann and
Haase, 2011). Their use as a distortion measure, is both sufficient

� This work was partially supported by ONR grant N00014-17-1-2622.

and necessary for choosing the mean as a representative of a
random set, when trying to minimize the expected value of
the distortion. In addition, due to the correspondence between
exponential families and Bregman divergences, the efficiency
of soft-clustering algorithms using Expectation-Maximization
(EM) methods, and Deterministic Annealing approaches (Rose,
1998), can be greatly improved (Banerjee et al., 2005).

Batch algorithms for Vector Quantization based on the gener-
alized Linde-Buzo-Gray (LBG) algorithm (Gersho and Gray,
2012), have been shown to converge to a minimum of the average
distortion, if and only if a Bregman divergence is used as a
distortion measure (Banerjee et al., 2005). However, conver-
gence analysis of stochastic VQ and LVQ, is more involved
due to their iterative nature and the non-differentiability of the
cost functions (Bottou, 1998; Baras and LaVigna, 1991; Baras
and Dey, 1999). While differentiable approximations of the
cost functions have been introduced (Sato and Yamada, 1996;
Hammer and Villmann, 2002; Nova and Estévez, 2014)), to our
knowledge, convergence properties have only been studied when
using metrics, such as the Euclidean distance.

In this work, we focus on the convergence properties of stochas-
tic VQ and LVQ using Bregman divergences. We formulate these
algorithms as stochastic approximation algorithms (Benveniste
et al., 2012; Borkar, 2009; Bottou, 1998), and investigate the
conditions on the initialization and the Bregman divergence
generating functions, under which, the algorithms converge.
Through standard Lyapunov stability arguments, we show con-
vergence to configurations that minimize appropriately defined
objective functions. These results formally support the use of
Bregman divergences, such as the Kullback-Leibler divergence,
in vector quantization algorithms.

The rest of the paper is organized as follows: Section 2 defines
the Bregman Divergences and introduces the stochastic approx-



	 Christos N. Mavridis  et al. / IFAC PapersOnLine 53-2 (2020) 2214–2219	 2215

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license  
(http://creativecommons.org/licenses/by-nc-nd/4.0)

imation theory, and Sections 3 and 4 study the convergence
properties of VQ and LVQ algorithms, respectively. In Section 5,
initialization methods, LVQ variants, and practical implications
are discussed, and, finally, Section 6 concludes the paper.

2. PRELIMINARIES

2.1 Bregman Divergences

A Bregman Divergence d : H×H → [0,∞), where H is a normed
vector space, is defined as:
Definition 1 (Bregman Divergence). Let φ : H → R, be a
strictly convex function defined on a normed vector space
dom(φ) = H such that φ is twice F-differentiable on H. The
Bregman divergence dφ : H ×H → [0,∞) is defined as:

dφ (x,µ) = φ (x)−φ (µ)− ∂φ
∂ µ

(µ)(x−µ) ,

where x,µ ∈ H, and the continuous linear map ∂φ
∂ µ (µ) : H → R

is the Fréchet derivative of φ at µ .

In this work, we will concentrate on nonempty, compact convex
sets S ⊆ H, where H is a finite dimensional Hilbert space, and in
particular, H =Rd , where, in view of the Riesz-Fréchet theorem,
and under the Euclidean inner product 〈x,y〉= xT y, it is common
to denote ∂φ

∂ µ (µ)s = 〈∇φ(µ),s〉 , ∀s ∈ H, so that the derivative
of dφ with respect to the second argument can be written as

∂dφ

∂ µ
(x,µ) =

∂φ(x)
∂ µ

− ∂φ(µ)
∂ µ

− ∂ 2φ(µ)
∂ µ2 (x−µ)+

∂φ(µ)
∂ µ

=−∂ 2φ(µ)
∂ µ2 (x−µ) =−

〈
∇2φ(µ),(x−µ)

〉

where x,µ ∈ S, ∂
∂ µ represents differentiation with respect to

the second argument of dφ , and ∇2φ(µ) represents the Hessian
matrix of φ at µ .
Example 1. As a first example, φ(x) = 〈x,x〉 , x ∈Rd, gives the
squared Euclidean distance

dφ (x,µ) = ‖x−µ‖2

for which ∂dφ
∂ µ (x,µ) =−2(x−µ).

Example 2. A second interesting Bregman divergence that
shows the connection to information theory, is the generalized
I-divergence which results from φ(x) = 〈x, logx〉 , x ∈Rd

++ such
that

dφ (x,y) = 〈x, logx− log µ〉−〈1,x−µ〉

for which ∂dφ
∂ µ (x,µ) =−diag−1(µ)(x−µ), where 1 ∈Rd is the

vector of ones, and diag−1(µ) ∈ Rd×d
++ is the diagonal matrix

with diagonal elements the inverse elements of µ . It is easy
to see that φ(x) reduces to the Kullback-Leibler divergence if
〈1,x〉= 1.

We summarize a key property of Bregman divergences in vector
quantization (Banerjee et al., 2005) in the following:
Theorem 1. Let X : Ω → S be a random variable defined in
the probability space (Ω,F,P) such that E [X ] ∈ ri(S), and let
a distortion measure d : S× ri(S)→ [0,∞), where ri(S) denotes
the relative interior of S. Then µ :=E [X ] is the unique minimizer
of E [d (X ,s)] in ri(S), if and only if d is a Bregman Divergence
for any function φ that satisfies the definition.

Proof. For necessity, identical arguments as in Appendix B of
(Banerjee et al., 2005) are followed. For sufficiency,

E
[
dφ (X ,s)

]
−E

[
dφ (X ,µ)

]
=

= φ(µ)+
∂φ
∂ µ

(µ)(E [X ]−µ)−φ(s)− ∂φ
∂ s

(s)(E [X ]− s)

= φ(µ)−φ(s)− ∂φ
∂ s

(s)(µ − s) = dφ (µ,s)≥ 0, ∀s ∈ S

with equality holding only when s = µ by the strict convexity of
φ , which completes the proof.

2.2 Stochastic Approximation

Theorem 2 ((Borkar, 2009), Ch.2). Almost surely, the sequence
{xn} ∈ S ⊆ Rd generated by the following stochastic approxi-
mation scheme:

xn+1 = xn +α(n) [h(xn)+Mn+1] , n ≥ 0 (1)
with prescribed x0, converges to a (possibly sample path
dependent) compact, connected, internally chain transitive,
invariant set of the o.d.e:

ẋ(t) = h(x(t)) , t ≥ 0, (2)
where x : R+ → Rd and x(0) = x0, provided the following
assumptions hold:

(A1) The map h : Rd → Rd is Lipschitz in S, i.e., ∃L with
0 < L < ∞ such that ‖h(x)−h(y)‖ ≤ L‖x− y‖ , x,y ∈ S,

(A2) The stepsizes {α(n) ∈ R++, n ≥ 0} satisfy ∑n α(n) = ∞,
and ∑n α2(n)< ∞ ,

(A3) {Mn} is a martingale difference sequence with respect to
the increasing family of σ -fields Fn := σ (xm,Mm, m ≤ n),
n ≥ 0, i.e., E [Mn+1|Fn] = 0 a.s., for all n ≥ 0, and, further-

more, {Mn} are square-integrable with E
[
‖Mn+1‖2 |Fn

]
≤

K
(

1+‖xn‖2
)
, a.s., where n ≥ 0 for some K > 0,

(A4) The iterates {xn} remain bounded a.s., i.e., supn ‖xn‖< ∞
a.s.

Given the conditions of Theorem 2 and using standard Lya-
punov arguments, the following corollary, regarding distributed,
asynchronous implementation of the algorithm, also holds:
Corollary 2.1 ((Borkar, 2009), Ch. 7). Suppose there exists a
continuously differentiable function J, such that h(x) =−∇J(x).
Define Yn ⊆ {1, . . . ,d} to be the subset of components of xn
that are updated at time n, and v(i,n) := ∑n

m=01[i∈Ym] to be the

number of times the i-th component x(i)n has been updated up
until time n. Then, almost surely, the sequence {xn} generated
by

x(i)n+1 = x(i)n +α(v(i,n))1[i∈Yn]

[
h(i)(xn)+M(i)

n+1

]
(3)

where i ∈ {1, . . . ,d}, and n ≥ 0, converge to the invariant
set H := {x : ∇J(x) = 0}, provided that each component (i) is
updated infinitely often, i.e.

lim
n→∞

inf
v(i,n)

n
> 0.

3. CONVERGENCE OF STOCHASTIC VECTOR
QUANTIZATION

In this section, we focus on the unsupervised problem of
prototype-based clustering. One can show based on Theorem 1,
that the use of Bregman divergences in batch algorithms based on
the generalized Lloyd algorithm, is both necessary and sufficient
for local convergence (Banerjee et al., 2005).
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We extend this result to prove convergence of the stochastic Vec-
tor Quantization algorithm (Kohonen, 1995) based on Bregman
divergences.

We begin with the definition of a Voronoi partition:
Definition 2 (Voronoi Partition). Let Sh ⊆ S, h = 1, . . . ,k, such

that V := {Sh}k
h=1 forms a partition of S, i.e.

k⋃
h=1

Sh = S, and

Si
⋂

S j = /0, i �= j ∈ {1, . . . ,k}. Then V is called a Voronoi
partition with respect to M := {µh}k

h=1 ∈ Sk, if

Sh =

{
X ∈ S : h = argmin

τ=1,...,k
d(X ,µτ)

}
, h = 1, . . . ,k.

where d : S× S → [0,∞). If d ≡ dφ is a Bregman divergence
for an appropriately defined function φ , then Sh are convex,
since the locus of equidistant points between two different points
µ1 �= µ2 ∈ S is a hyperplane.

Then, the problem of divergence-based Vector Quantization can
be stated as an optimization problem:
Problem 1. Let X : Ω → S be a random variable defined in
the probability space (Ω,F,P), and dφ : S× ri(S)→ [0,∞) be a
Bregman divergence with properly defined function φ . Let V :=
{Sh}k

h=1 be a Voronoi partition of S with respect to dφ and M :=
{µh}k

h=1, such that µh ∈ ri(Sh), h ∈ K, K := {1, . . . ,k}, and
define the quantizer Q : S → S such that Q(X) =∑k

h=1 µh1[X∈Sh].

Then the problem is formulated as
min
M,V

J(Q) := EX
[
dφ (X ,Q(X))

]

⇔ min
{µh}k

h=1

J(Q) :=
k

∑
h=1

EX
[
dφ (X ,µh)1[X∈Sh]

]
,

It is typically the case that the actual distribution of X ∈ S
is unknown, and a set of independent realizations {Xi}n

i=1 :=
{X(ωi)}n

i=1, for ωi ∈ Ω, are available. The stochastic vector
quantization algorithm can be used when the observed data
are not available a priori but are being acquired online, or
when the processing of the entire dataset in every iteration is
computationally expensive, and is defined recursively for every
t ≥ 0 as:
Definition 3 (Stochastic Vector Quantization Algorithm).

µ t+1
h = µ t

h −α(v(h, t))1[Xt+1∈St+1
h ]∇µh

dφ
(
Xt+1,µ t

h
)

St+1
h =

{
X ∈ S : h = argmin

τ=1,...,k
dφ (X ,µ t

τ )

}
, h ∈ K

(4)

where µ0
h is given during initialization.

We employ the o.d.e. method introduced in Theorem 2 to show
convergence of Algorithm (4) to a local minimum of J(Q), as
n → ∞. In what follows we work in the same way for all h ∈ K.
First, we define the functions Θh : Sk ×S → H as

Θh(µ,X) =
(
−1[X∈Sh]

)
∇µh

dφ (X ,µh)

and introduce, for t ≥ 0, the increasing family of σ -fields
Ft := σ

(
µτ

h ,Xτ , τ ≤ t
)
, in order to define, for every t ≥ 0, the

differences
Mt+1

h := Θh(µ t ,Xt+1)−E
[
Θh(µ t ,Xt+1)|Ft

]
which are martingale difference sequences, since, by definition,
E
[
Mt+1

h |Ft
]
= 0 almost surely. Intuitively, we have expressed

Θh(µ t ,Xt+1) as a perturbation of θ t
h(µ) := E [Θh(µ t ,Xt+1)|Ft ],

for all t ≥ 0. Given the iid assumption on {Xt}n
t=1, we can write

θ t
h(µ) = E

[
Θh(µ t ,Xt+1)|Ft

]
= EX

[
Θh(µ t ,Xt+1)

]
a.s.

where, the expectation operator EX [·] is with respect to the
random variable X , given the values of µh, and therefore Sh.
In other words, algorithm (4) is a stochastic approximation
algorithm:

µ t+1 = µ t +α(t)
[
θ t(µ)+Mt+1] (5)

where µ t =
[
µ t

1, . . . ,µ
t
k

]T , Mt =
[
Mt

1, . . . ,M
t
k

]T , and θ t(µ) =[
θ t

1(µ), . . . ,θ
t
k(µ)

]T . In order for (5) to satisfy the conditions
of Theorem 2, we first select the stepsizes {α(t)}t≥0 to satisfy
(A2), and define the functions

θh(µ) = EX
[
Θh(µ t ,Xt+1)

]

=−EX
[
1[X∈Sh]∇µhdφ (X ,µh)

]

In order to satisfy (A1), and (A3), we limit the choices of the
Bregman divergence generating functions to those that satisfy
the assumption:
Assumption 1. The strictly convex function φ : S → R is two

times continuously F-differentiable on S, and
∥∥∥ ∂ 2φ(µ)

∂ µ2 (x−µ)
∥∥∥

2
≤

K0(1+‖µ‖2) in S, for some K0 > 0.

We note that the latter condition is satisfied if

tr(
(

∂ 2φ(µ)
∂ µ2

)T (∂ 2φ(µ)
∂ µ2

)
)≤ K0

for all µ ∈ S, and φ functions used in common Bregman
divergences, satisfy Assumption 1.

In order to check Lipschitz continuity for θ(·), we write θh(µ)
as

θh(µ) =−
∫

Sh

∂
∂ µh

dφ (x,µh)dF(x) =
∫

Sh

∂ 2

∂ µ2
h

φ(µh)(x−µh)dF(x)

and observe that for µ,m ∈ Sk

θh(µ)−θh(m) =
∂ 2

∂ µ2
h

φ(µh)
∫

Sh

xdF(x)− ∂ 2

∂m2
h

φ(mh)
∫

Σh

xdF(x)

−
(

µh
∂ 2

∂ µ2
h

φ(µh)
∫

Sh

dF(x)−mh
∂ 2

∂m2
h

φ(mh)
∫

Σh

dF(x)
)

where Sh = Sh(µ), and Σh = Σh(m). We can bound

|
∫

Sh

dF(x)−
∫

Σh

dF(x)| ≤C1‖µ −m‖,

|
∫

Sh

xdF(x)−
∫

Σh

xdF(x)| ≤C2‖µ −m‖

such that θ(µ)−θ(m)≤ L‖µ−m‖, i.e. θ(·) is locally Lipschitz.
Furthermore, given Algorithm (4), the compactness of S, and the
fact that µ0 <∞, we can conclude that {µ t}n

t=0 remains bounded
almost surely. We have already shown that E

[
Mt+1

h |Ft
]
= 0 a.s.,

and, under Assumption 1:

E
[∥∥Mt+1

h

∥∥2 |Ft

]
= EX

[∥∥Θh(µ t ,Xt+1)
∥∥2
]
−
∥∥θ t

h(µ)
∥∥2

= EX

[∥∥∥1[X∈St+1
h ]∇µh

dφ
(
X ,µ t

h
)∥∥∥

2
]

−
∥∥∥EX

[
1[X∈Sh]∇µh

dφ (X ,µh)
]∥∥∥

2

≤ K1

(
1+

∥∥µ t
h

∥∥2
)

for some K1 > 0. Therefore, by Theorem 2 and Corollary 2.1,
µ t converges to an invariant set of the o.d.e:

µ̇(t) = θ (µ(t)) , t ≥ 0, (6)

where µ : R+ → Sk, and µ(0) = µ0, i.e., limt→∞ µ t = µ∗almost
surely, for some equilibrium µ∗ inside a domain of attraction
D∗ of (6). It should be mentioned that there is no general theory
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for the conditions under which µ visits a specific D∗, which,
depends on both the initial conditions of (4) and the sample path
{Xt}n

t=1. Regarding the initial conditions µ0, the convergence
results above require that they are chosen close to a stable
point µ∗ of (6), i.e., within the domain of attraction D∗. We are
interested in asymptotically stable equilibria of (6). We recall
that

θh(µ) =−EX
[
1[X∈Sh]∇µhdφ (X ,µh)

]

=−∇µh
EX

[
1[X∈Sh]dφ (X ,µh)

]

and define the functions Jh(µ) := EX
[
1[X∈Sh]dφ (X ,µh)

]
and

J(µ) := ∑k
h=1 Jh(µ) = EX

[
dφ (X ,Q(X))

]
. Then

µ̇ = θ(µ) =−∇µ J(µ)
where the cost function J ≥ 0 can be treated as a potential
function to be minimized, so that, by standard Lyapunov
stability arguments, if J(µ∗) is a minimum of J, then µ∗ is an
asymptotically stable equilibrium point for (6) for some domain
of attraction D∗. Therefore, we have shown the following:
Theorem 3. The sequence {µ t} generated by the stochastic
vector quantization algorithm (Definition 3) converges almost
surely to a local solution µ∗ of Problem 1, as long as the function
φ satisfies Assumption 1, the stepsizes satisfy ∑t α(t) = ∞,
∑t α2(t) < ∞, and all components µ(i) are updated infinitely
often.

Furthermore, it can be shown (see e.g. Devroye et al. (2013))
that, as the number of clusters goes to infinity, i.e. as k → ∞, and
because S is assumed compact, if X has a continuous density
function, then J(Q) → 0 in probability, which imposes that
EX

[
dφ (X ,µh)1[X∈Sh]

]
→ 0, for all h ∈ K, resulting in µ∗ being

a weakly consistent density estimator.

4. CONVERGENCE OF LEARNING VECTOR
QUANTIZATION

Learning vector quantization (LVQ) first introduced by Kohonen
(Kohonen, 1995) is the supervised counterpart of the stochastic
vector quantization algorithm, used for approximating the
decision boundary of a pattern classification problem. It uses a
set of training data for which the classes are known in order to
divide the data space into a number of Voronoi cells represented
by the corresponding Voronoi vectors and their associated
class decisions.We investigate the convergence properties of
LVQ, based on Bregman divergences, in the case of binary
classification, which can easily be generalized to any type of
classification task (see, e.g. (Duda et al., 2012)). Consider the
following binary classification problem:
Problem 2. Let {X ,c} ∈ S × {0,1} defined in a probabil-
ity space (Ω,F,P), X : Ω → S be a random variable, and
c : S →{0,1} its associated decision variable, such that c rep-
resents the actual class of X. Let V := {Sh}k

h=1 be a Voronoi
partition of S with respect to dφ and M := {µh}k

h=1 , µh ∈ ri(Sh),

and define Cµ :=
{

cµh

}k
h=1 ,cµh ∈ {0,1} ,h ∈ K, K = {1, . . . ,k},

such that cµh represents the class of µh for all h ∈ K. Define the
quantizer Q : S →{0,1} such that Q(X) = ∑k

h=1 cµh1[X∈Sh].

The minimum-error classification problem is then formulated as
min

{µh}k
h=1

JB(Q) := π1 ∑
H0

P1 [X ∈ Sh]+π0 ∑
H1

P0 [X ∈ Sh]

where πi = P [c = i] ,Pi {·} = P{·|c = i}, and Hi is defined as
Hi =

{
h ∈ {1, . . . ,k} : cµh = i

}
, i, j ∈ {0,1} , i �= j.

Remark 1. We can generalize the definition of the minimum-
error cost function JB to a minimum-risk cost function

JR(Q) = π1 ∑
H0

E1
[
R(X)1[X∈Sh ]

]
+π0 ∑

H1

E0
[
R(X)1[X∈Sh ]

]

where Ei denotes the expected value with respect to Pi, i, j ∈
{0,1} , i �= j, and R : S → R+ is a risk function which assigns a
miss-classification cost to each element in the domain of X.

Typically, the distribution of {X ,c} is not known, and, a se-
quence {Xi,ci}n

i=1 := {X(ωi),c(ωi)}n
i=1 of independent real-

izations is being observed. The Learning Vector Quantization
algorithm (LVQ) can be used when the observed data are
acquired online, when the class indices of some observed data
are not known apriori for training and need to be discovered, or
when the processing of the entire dataset in every iteration is
computationally expensive, and is defined recursively as follows
Definition 4 (Learning Vector Quantization Algorithm).

{
µ t+1

h = µ t
h −α(v(h, t))∇µh

dφ
(
Xt+1,µ t

h
)
, if ct+1 = ct

µh

µ t+1
h = µ t

h +α(v(h, t))∇µh
dφ

(
Xt+1,µ t

h
)
, if ct+1 �= ct

µh

where h = argmin
τ=1,...,k

dφ (Xt+1,µ t
τ), and µ0

h is given.

We can write the LVQ algorithm as

µ t+1
h = µ t

h +α(v(h, t))Θh(µ t ,Ct
µ ,Xt+1,ct+1)∇µh

dφ
(
Xt+1,µ t

h
)

St+1
h =

{
X ∈ S : h = argmin

τ=1,...,k
dφ (X ,µ t

τ )

}
, h = 1, . . . ,k

(7)

where, following the same methodology as in Section 3 for all
h ∈ K, we have defined the functions

Θh(µ,Cµ ,X ,c) =
(
−1[X∈Sh ]

)(
1[c=cµh ]

−1[c�=cµh ]

)
∇µh

dφ (X ,µh) ,

as well as the martingale difference sequences

Mt+1
h := Θh(µ t ,Ct

µ ,Xt+1,ct+1)−E
[
Θh(µ t ,Ct

µ ,Xt+1,ct+1)|Ft
]
,

where Ft := σ
(
µτ

h ,Xτ ,cτ , τ ≤ t
)
, for t ≥ 0, and, assuming

similar independence as in Section 3, the functions θ t
h(µ) :=

E
[
Θh(µ t ,Ct

µ ,Xt+1,ct+1)|Ft

]
= E

[
Θh(µ t ,Ct

µ ,Xt+1,ct+1)|µ t
h

]
a.s. Now (7)

is a stochastic approximation algorithm in the form of (5) with
stepsizes {α(t)}t≥0 satisfying (A2), and (A1), and (A3) are sat-

isfied by Assumption 1, assuming θ(µ) =
[
θ 1(µ), . . . ,θ k(µ)

]T

is Lipschitz continuous as before, with

θh(µ) = EX
[
Θh(µ,Cµ ,X ,c)

]

= π0E0
[
Θh(µ,Cµ ,X ,c)

]
+π1E1

[
Θh(µ,Cµ ,X ,c)

]

=−δµh

(
π0E0

[
1[X∈Sh ]

∇µh
dφ (X ,µh)

]

− π1E1

[
1[X∈Sh ]

∇µh
dφ (X ,µh)

])
,

where δµh =

{
1, cµh = 0
−1, cµh = 1

, and E
[∥∥Mt+1

h

∥∥2 |Ft

]
≤ K1 (1+

∥∥µ t
h

∥∥2
)

for some K1 > 0. However there is no guarantee that

(A4) will be satisfied, i.e. supt
∥∥µ t

h

∥∥ < ∞ a.s., and, in fact, in
some cases the centroids µh, h ∈ K may diverge. Many variants
of Algorithm (7) have been proposed to overcome this issue, as
explained in Section 5, including changing the decision policy of
each centroid so that cµh is updated in each iteration, according
to the majority vote criterion, on the classes of the data in Sh
(Baras and LaVigna, 1991). Assuming that supt

∥∥µ t
h

∥∥< ∞ a.s,
and according to Theorem 2 and Corollary 2.1, µ t converges to
an invariant set of the o.d.e:

µ̇(t) = θ (µ(t)) , t ≥ 0, (8)
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where µ : R+ → Sk, and µ(0) = µ0, i.e., limt→∞ µ t = µ∗ almost
surely, for some equilibrium µ∗ inside a domain of attraction D∗

of (8).

At this point, we seek potential asymptotically stable equilibrium
points of (8). We note that, assuming boundedness of the
expectations,

θh(µ) =−δµh

(
π0E0

[
1[X∈Sh ]

∇µh
dφ (X ,µh)

]
−π1E1

[
1[X∈Sh ]

∇µh
dφ (X ,µh)

])

=−δµh ∇µh

(
π0E0

[
1[X∈Sh ]

dφ (X ,µh)
]
−π1E1

[
1[X∈Sh ]

dφ (X ,µh)
])

and define the functions
JLh (µ) := δµh

(
π0E0

[
1[X∈Sh ]

dφ (X ,µh)
]
−π1E1

[
1[X∈Sh ]

dφ (X ,µh)
])

and JL(µ) := ∑k
h=1 Jh(µ), where

JL =
k

∑
h=1

δµh

(
π0E0

[
1[X∈Sh ]

dφ (X ,µh)
]
−π1E1

[
1[X∈Sh ]

dφ (X ,µh)
])

= ∑
H0

(
π0E0

[
1[X∈Sh ]

dφ (X ,µh)
]
−π1E1

[
1[X∈Sh ]

dφ (X ,µh)
])

−∑
H1

(
π0E0

[
1[X∈Sh ]

dφ (X ,µh)
]
−π1E1

[
1[X∈Sh ]

dφ (X ,µh)
])

such that,
µ̇ = θ(µ) =−∇µ JL(µ)

and, by standard Lyapunov stability arguments, µ∗, for which
JL is minimized, is an asymptotically stable equilibrium point
for (8) for some domain of attraction D∗, such that µ → µ∗,
as the number of samples goes to infinity, and function JL(µ)
is minimized. A careful review of the form of JL reveals that
the LVQ algorithm moves the cluster representatives µh, h ∈ K,
such that the average distortion (with respect to dφ ) associated
with the distribution of the data points that belong to the same
class as cµh is minimized, and the average distortion associated
with the distribution of the data points that do not belong to
the same class as cµh is maximized. Intuitively, this moves the
misclassified regions of Sh towards its boundary and favorites
their transition to adjacent Voronoi regions, as the number of
clusters increases.

Now, by definition
J(Q)− JL(Q) = 2Jdφ (Q)≥ 0

and
J(Q)+ JL(Q) = 2(J(Q)− Jdφ (Q))≥ 0

where J(Q) = ∑k
h=1E

[
dφ (X ,µh)1[X∈Sh]

]
is the quantization

error, and
Jdφ (Q) = π1 ∑

H0

E1
[
dφ (X ,µh)1[X∈Sh ]

]
+π0 ∑

H1

E0
[
dφ (X ,µh)1[X∈Sh ]

]

is the minimum risk error associated with the risk function
R(X) := dφ (X ,µh), for all h ∈ K. Therefore, we conclude that

−J(Q)≤ JL(Q)≤ J(Q)

As the number of clusters goes to infinity, i.e. k = kt
t→

∞, J(Q)
k→∞−→ 0 in probability, and the size of the clusters

Sh, h = 1, . . . ,k goes to zero, and, as a result, JL(Q)
k→∞−→ 0 and

Jdφ (Q)
k→∞−→ 0 as well. Moreover the consistency of the partition-

based classifier that is generated by the algorithm for k = kt
t→ ∞

can be studied. Assuming that, after some point, the class cµh of
each region Sh is assigned in a way that minimizes the probability
of error, i.e.

πiPi [X ∈ Sh]≥ π jP j [X ∈ Sh] , if cµh = i, i ∈ {0,1} (9)
and under bounded support, Thm. 21.2, Ch.21 of (Devroye et al.,
2013) can be employed to show that algorithm (7) is consistent in

the sense that it converges to the Bayes classification error almost
surely by minimizing JB(Q). Provided that limt→∞ k2

t
log t

t → 0,

and given that J(Q)
k→∞−→ 0, the arguments used in the proof

of Thm. 21.5 of (Devroye et al., 2013), on the consistency of
clustering-based majority vote classifiers based on Euclidean
norm, can be directly extended to the use of Bregman diver-
gences studied in this paper.

We note that as the number of samples goes to infinity, i.e. n→∞,
assumption (9) is satisfied by the majority vote criterion inside
each cluster, where cµh is assigned the class of the majority of
the training samples inside Sh. The majority vote criterion may
be expected to be satisfied after some iterations of the LVQ
algorithm, due to the minimization of JL, or can be guaranteed
to be satisfied by adopting a majority-vote decision policy for
cµh , as introduced in the modified LVQ algorithm proposed in
(Baras and LaVigna, 1991).

Therefore, we have shown the following:
Theorem 4. The sequence {µ t} generated by the learning vec-
tor quantization algorithm (Definition 4) converges almost surely
to a solution µ∗ of Problem 2, as n → ∞ and k → ∞, provided
that (9) holds, limt→∞ k2

t
log t

t → 0, ∑t α(t) = ∞, ∑t α2(t) < ∞,
supt ‖µ t‖ < ∞ a.s., the function φ satisfies the conditions of
Assumption 1, and all components µ(i) are updated infinitely
often.

5. INITIALIZATION, VARIANTS, AND PRACTICAL
IMPLICATIONS

Based on the analysis of algorithms (4) and (7) the initial
configuration, as well as the number k of the clusters, are
shown to play an important role in both the configuration of
convergence, and the achieved minimum distortion. As this
phenomenon is common in non-convex stochastic optimiza-
tion problems, annealing methods for avoiding local minima
have been proposed, (Kirkpatrick et al., 1983; Rose, 1998).
In particular, Deterministic Annealing (DA) algorithms (Rose,
1998), which make use of Gibbs distribution functions, become
computationally easier to solve when based on Bregman diver-
gences, due to their correspondence with exponential distribution
families (Banerjee et al., 2005). This can compensate for the
increase in the computational cost due to relaxing the hard-
clustering to a soft-clustering problem, and can be used as a first
step before applying vector quantization algorithms.

In order to guarantee satisfaction of Assumption (A4), i.e.
supt

∥∥µ t
h

∥∥ < ∞ a.s., Kohonen in (Kohonen, 1995) initially
proposed LVQ2.1, a variant of LVQ1 where two weights are
simultaneously updated at each iteration, and Sato et. al in (Sato
and Yamada, 1996) introduced the Generalized LVQ algorithm:

µ t+1
h = µ t

h −α(t)∇µh
f
(
Xt+1,µ t

h,µ
t
l
)

µ t+1
l = µ t

l −α(t)∇µl
f
(
Xt+1,µ t

h,µ
t
l
)
,

where h= argmin{τ:cµτ =ct} dφ (Xt+1,µ t
τ ), l = argmin{τ:cµτ �=ct} dφ (Xt+1,µ t

τ ),

µ0
h is given, and the function f : S×S×S → R is carefully selected

(Sato and Yamada, 1996). Although out of the scope of this paper,
stochastic approximation can be applied as in the proposed
methodology, to show that, under similar assumptions, LVQ2.1
and GLVQ, minimize, at least locally and as t,k → ∞, their cost
functions J =E

[
f
(
Xt+1,µ t

h,µ
t
l

)]
with f depending on the algorithm.

The results presented in this work formally support the use
of the family of Bregman divergences in vector quantization
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algorithms, which, because of their developed mathematical
theory, can be used, in conjunction with current neural network
architectures, in classification and clustering problems, time se-
ries analysis, biomedical applications, topological data analysis,
and adversarial learning, where the robustness of LVQ methods
against adversarial attacks suggest promising results. In addition,
Bregman divergences, such as the Kullback-Leibler divergence,
are mathematically related to type I and type II classification
errors (via Stein’s Theorem), which can make the associated
learning algorithms more robust compared to algorithms based
on Euclidean norm or other metrics. This suggests that learn-
ing algorithms, including, but not limited to, VQ and LVQ,
can become a powerful tool when combined with Bregman
divergences, and may explain the increased performance of
the state-of-the-art deep neural network architectures when
using information-theoretic measures, such as the unnormalized
Kullback-Leibler divergence, in place of the Euclidean norm, a
Bregman divergence, which is, at the same time, a metric.

As a final note, The connection between vector quantization
and stochastic approximation algorithms suggests that further
investigation may lead to bounds on the convergence rate and
convergence of time-delayed asynchronous versions (e.g. in
parallel processing), and may allow for the analysis of variants
of these algorithms, such as Kohonen’s Self-Organizing Maps.

6. CONCLUSION

In this work, we investigated the convergence of the unsuper-
vised, stochastic vector quantization algorithm, and its super-
vised counterpart, learning vector quantization, based on Breg-
man divergences as dissimilarity measures. The convergence
properties of the algorithms do not depend on the particular
choice of the Bregman divergence, as long as its generating
function satisfies certain conditions, but are shown to depend
on conditions related to both the initialization of the weights
and the observed training sample path. Our results formally
support the use of Bregman divergences, such as the Kullback-
Leibler divergence, in VQ and LVQ algorithms. The connection
between vector quantization and stochastic approximation algo-
rithms suggests promising results on the convergence rate, and
the performance of variants and paralelized versions of these
algorithms.
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