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Abstract. In this work we consider the problem of defending against
adversarial attacks from UAV swarms performing complex maneuvers,
driven by multiple, dynamically changing, leaders. We rely on short-time
observations of the trajectories of the UAVs and develop a leader detec-
tion scheme based on the notion of Granger causality. We proceed with
the estimation of the swarm’s coordination laws, modeled by a general-
ized Cucker-Smale model with non-local repulsive potential functions and
dynamically changing leaders, through an appropriately defined iterative
optimization algorithm. Similar problems exist in communication and
computer networks, as well as social networks over the Internet. Thus,
the methodology and algorithms proposed can be applied to many types
of network swarms including detection of influential malevolent “sources”
of attacks and “miss-information”. The proposed algorithms are robust
to missing data and noise. We validate our methodology using simulation
data of complex swarm movements.

Keywords: Leader detection · Anti-UAV defense · Identification of
swarm coordination laws

1 Introduction

Air defense systems have been forced to constantly adapt and evolve over time
to combat various new types of aerial threats. Today’s air defense systems are
highly capable of taking out single targets with ever increasing levels of precision.
However, the advent and proliferation of the use of Unmanned Aerial Vehicles
(UAV’s) now poses new challenges to air defense systems. With the increase in
computing capabilities in low cost hardware components, it has become feasible
for adversarial forces to employ UAV swarms to be used for activities ranging
from surveillance to deadly payload delivery and targeted attacks. While modern
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high-precision targeting anti-air defenses are capable of taking down a single
UAV, when it comes to a large swarm of UAV’s attacking simultaneously, these
defences can be rendered ineffective. These problems are even more challenging
when in UAV swarms, a few units are managed by humans (we refer to them
as “leaders”, while most units “follow”, leading to very effective management
of large swarms. When the role of leaders can be dynamically re-assigned the
monitoring and defense against such swarms becomes even more difficult.

The first question that needs to be addressed in creating a defense against a
hostile UAV swarm is understanding the control (coordination) and communica-
tion laws governing how the drones move and interact with each other. In large
swarms it is unlikely that all the interacting drones have independent control and
motion planning algorithms (of the kind found in the single robot planning liter-
ature [24]). Instead, flocking models have been proposed to study animal flocks
and artificial swarm dynamics [1,2,8,9,20,25,27]. The investigation of these bio-
logical swarms have provided inspiration and useful modeling abstractions for
addressing these challenging problems.

However, when studying complex swarm maneuvers, autonomous models
such as the Cucker-Smale model [8,11] or the Boids model [27] cannot capture
the behavior of the swarm, and leadership is often incorporated in the flocking
model [31]. Having understood the flocking nature of the swarm, one key idea
for creating a defense strategy in order to combat the swarm involves accurately
identifying the leaders and the underlying dynamics of particle interactions in the
swarm. The first step requires the clear identification of the leaders in the hostile
swarm. If the leaders can be identified in real time then modern air defense sys-
tems such as high precision laser weapons which are aimed at combating UAV’s
can be used to take out these leaders, thus disrupting the operation of the entire
swarm. Recent work into leader detection has looked into the use of Markov
Chain Monte Carlo based group tracking methods [6]. However, in order to han-
dle real time leader detection in high particle count swarms this paper proposes
a Granger causality based detection method.

In this paper we will use the terms agents and particles interchangeably.
Extracting the laws of interaction (or coordination) between agents is the next
requirement for creating a defense strategy against large hostile swarms. Under-
standing the governing dynamics of the hostile swarm will enable the defense
system to plan ahead and anticipate how the swarm would react to different
strategies such as the focused removal of the agents identified as leaders. Multi-
ple methods exist in order to identify the underlying interactions and dynamics
of particle swarms. Statistical [5,16], and, mainly, model-based [8,20,27] learn-
ing approaches have been used to infer interaction rules between particles. In [4]
symbolic equations are generated from the numerically calculated derivatives of
the system variables, in [19] the constitutive equations of physical components
composing the system are learned, while in [18] the order of a fractional differen-
tial system of equations, which models the system, is estimated. Recently, Matei
et al. in [20], and Mavridis et al. in [22] have modeled the networked swarm as
a port-Hamiltonian system [29] and have accurately reconstructed the laws of
interaction (or coordination) of the swarm and its dynamical properties, from
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observed trajectories of the individual agents. Furthermore in these recent works
[20,22,23] we have also demonstrated the robustness of the associated algorithms
to both noisy observations as well as missing data.

Similar problems are found in many other types of large networked systems,
including communication and computer networks, sensor networks, networked
cyber-physical systems, biological systems, and social networks over the Inter-
net. In such systems there are corresponding notions of leaders, such as initiators
of a malicious attack, or coordinators of malevolent behavior, or initiators of a
biological cell-malfunction, or influential sources of miss-information or untrust-
worthiness [30]. In all these problems fast identification of the leaders and the
associated followers groups (or influence groups) is essential for defending and
correcting such malevolent actions and functions. Thus the applicability of the
ideas and methods proposed in this work is very broad, with the appropriate mod-
eling and semantic changes for the various domains.

In this work, we focus on observations of complex swarm maneuvers driven by
multiple dynamically changing leaders, and propose a leader detection scheme,
based on the notion of Granger causality, that allows for the online estimation of
the particle interaction laws through an appropriately defined iterative optimiza-
tion algorithm. In the learning process, we assume a generalized Cucker-Smale
model with non-local repulsive potential functions and dynamically changing
leaders [31]. We validate our methodology using simulation data of complex
swarm movements. Similar problems exist in communication and computer net-
works, as well as social networks over the Internet. Thus the methodology and
algorithms proposed can be applied to many types of network swarms including
detection of influential malevolent “sources” of attacks and “miss-information”.

The rest of the manuscript is organized as follows: Sect. 2 describes the models
used to describe the swarm dynamics, and Sects. 3 and 4 introduce the leader
detection algorithm. In Sect. 5 the learning algorithm for the swarm’s interaction
laws is formulated. Finally, Sect. 6 presents the experimental results, and Sect. 7
concludes the paper.

2 Modeling Complex Swarm Maneuvers

Fig. 1. Reconstructing complex swarm dynamics. The agents’ trajectories are observed
and used to detect leaders and identify a port-Hamiltonian networked system modeling
their interaction rules.

We view the interconnected problems of modeling and learning the interaction
laws of a swarm as one problem that can be analyzed in the microscopic scale as a
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port-Hamiltonian networked system. We extend existing simulation models, such
as the Boids and the Cucker-Smale models, to incorporate interaction, commu-
nication and dynamics terms that can capture realistic complex swarm maneu-
vers and develop corresponding simulation models in the macroscopic domain.
Specifically, we introduce

– a scalable simulation algorithm, based on the Boids model, that can capture
interaction laws and communication protocols of complex swarm maneuvers,
including (a) velocity alignment, (b) spatial cohesion, (c) collision avoidance,
and (d) response to dynamically changing leaders.

– a large-scale learning algorithm, based on the generalized Cucker-Smale model
and automatic differentiation, designed to work on state-of-the-art deep learn-
ing platforms that can identify the interaction laws (a)–(d) by observing par-
ticle trajectories of position and velocity (Fig. 1).

2.1 Extended Boids Model

The Boids algorithm is a widely used artificial flocking simulation algorithm
based on three basic rules [27].

1. Cohesion: Boids are steered in such a way that they move towards the aver-
age position (perceived center of mass) of local flockmates. The radius of
attraction is a parameter than can be tuned in this section.

2. Alignment : Boids are steered towards the average heading and average speed
of local flockmates.

3. Separation: Boids are steered in such a way that they avoid crowding local
flockmates. This acts as a collision avoidance strategy between particles.

The Boids model can be written as a dynamical system:
{
ẋi = vi
v̇i = −c∇Uc(x) − a∇Ua(x, v) + s∇Us(x)

(1)

where

– ∇Uc(x) = xi − 1
Nc

∑
j "=i 1[xi−xj≤rc]xj = 1/2∇‖xi − 1

Nc

∑
j "=i 1[xi−xj≤rc]xj‖2,

simulates the cohesion rule,
– ∇Ua(x, v) = vi− 1

Na

∑
j "=i 1[xi−xj≤ra]vj = 1/2∇‖vi− 1

Na

∑
j "=i 1[xi−xj≤ra]vj‖2,

simulates the velocity alignment rule, and
– ∇Us(x) =

∑
j "=i 1[xi−xj≤rs](xi − xj), simulates the collision avoidance (sepa-

ration) rule.

In addition to these rules, the interacting agents (boids) may be modeled to
have a tendency towards a particular place, by adding an attractive term with
respect to a possibly time-dependent potential function

−w∇Uw(x, xw) = −w1[xi−xw≤rw](xi − xw) = −1/2w1[xi−xw≤rw]∇‖xi − xw‖2

simulating strong wind or leadership.
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Although the Boids model is widely adapted in many simulations due to its
simplicity, the fact that the interaction of each particle with its neighbors is local,
i.e., the existence of the neighborhood radii ra, rs, rc etc., introduces problems
with the differentiability of the cost function of the learning problem. In order to
preserve differentiability and be able to utilize existing large-scale optimization
frameworks for deep learning to work, we need to replace the indicator function
of belonging to a neighborhood with a smooth interaction function ψ that defines
the grade of membership of a particle to the neighborhood of another.

2.2 Cucker-Smale Model with Leadership

When focused on the learning algorithm, we model the swarm with the Cucker-
Smale model [7,8]. In order to model complex flock maneuvers, we borrow from
the theory of flock leadership (see e.g. [31]) and incorporate leadership to the
Cucker-Smale model as follows:

Definition 1. Consider an interacting system of N particles. The leader sets
L(i), 1 ≤ i ≤ N of cardinality |L(i)| = 1 are assigned to each particle represent-
ing the index of the leader particle that it is following. Then the Cucker-Smale
(CS) model with leadership is defined in the following:

{
ẋi = vi
v̇i = K

N

∑N
j=1 ψij(x(t), v(t))

(2)

where

ψij(x) =

{
−∇U(‖xi − xj‖), j /∈ L(i), j &= i

G(‖xi − xj‖)(vj(t) − vi(t)) − ∇U(‖xi − xj‖), j ∈ L(i)
(3)

with a typical choice for the interaction function G that provably results in flock-
ing behavior being G(r) = 1

(1+r2)γ and the potential function usually taking the
form U(r) = −CAe−r/lA + CRe−r/lR , with CA, CR, lA, lR positive scalars.

It has been shown in [20] that the Cucker-Smale model with potentials is
equivalent to a fully connected N-dimensional network of generalized mass-
spring-dampers with appropriately defined Hamiltonian functions, that can be
written in a port-Hamiltonian form

ż = [J(z) − R(z)]
∂Hz)
∂z

(4)

where z = (q, p), with q, p ∈ R
N(N−1)

2 being the vectors of relative distances and
momenta between each pair of particles, and the quantities J = −JT, H and R
are appropriately defined. The dependence of (5) on the interaction function ψ
is introduced by the resistive term R = R(ψ) [20].
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It is straightforward to show that the CS model with leadership is equivalent
to an input-state-output port-Hamiltonian system of the form

ż = [J(z) − R(z)]
∂H(z)

∂z
+ g(z)u, (5)

where g(z) is appropriately defined, and u is an external control input that
affects only the leader particles and is responsible for their trajectories.

The intuitive difference in the interaction function is actually the sole dif-
ference between the Boids model and the Cucker-Smale model with potentials.
This also justifies why we may use the Boids model to simulate and the CS
model to learn, and why approaching the simulation and learning problems with
a single dynamical system is important for reconstructing the dynamics of com-
plex swarm maneuvers. The difference in the interaction functions is illustrated
in Fig. 2.

Fig. 2. The indicator “neighborhood” function in Boids model and the interaction
function in Cucker-Smale model.

We would like to emphasize that all the models proposed in our work
including port-Hamiltonian systems, Boids, CS interaction potentials, are useful
abstractions inspired from biology and physics. However the underlying systems
do not have to be biological or physical. The validity of the abstraction is mea-
sured by the degree with which these abstract models can generate dynamic
trajectories very similar to the observed ones (or the observed time varying data
series). Therefore these abstractions can be used, and have been used, to model
the various networked systems we mentioned earlier.

3 Leader Detection

We adopt a majority vote criterion for leader detection, where each particle i
votes for the particle j to be the leader, according to a measure related to the
observed trajectories of the particles.
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3.1 Granger Causality

Clive Granger in [10] defined a causality relationship based on two principles:

i. The cause happens prior to its effect
ii. The cause has unique information about the future values of its effect.

Given these assumptions, we say that a time series Y Granger-causes X if the
past values of Y provide statistically significant information about the future
values of X. In other words, we associate the existence of a causal effect of Y on
X with the following Hypothesis Test :

Definition 2. Let Y, X be stationary random processes, and consider the fol-
lowing two auto-regression models

xt = α0 +
p∑

i=1

αixt−i + ε1t , t > p (6)

xt = α0 +
p∑

i=1

αixt−i +
q∑

i=1

βiyt−i + ε2t , t > max {p, q} (7)

where εt ∼ N(0,σ2) is white noise. Then the non-causality null Hypothesis:

H0 : βi = 0,∀i ∈ {1, . . . , q}

is rejected if model (7) fits the data {xt}T+n
t=T , T > max {p, q}, in a window of n

samples, significantly better than model (6), i.e. if

p ! P
[
F > F̂ |H0

]
< a

for a given confidence level a, e.g. a ≤ 0.05, where

F̂ =

∑T+n
t=T ε1t −

∑T+n
t=T ε2t

q
∑T+n

t=T ε2t
n − (p+ q + 1)

(8)

We note that if (6) and (7) were simple regression models, the random vari-
able F would be defined such that it follows an F (q, n− (p+q+1)) distribution.
Because of the autoregression nature of (6), (7), it can be shown (e.g. Ch. 8 of
[12]), that qF asymptotically follows a χ2(q) distribution as n → ∞. In case of
non-stationary processes X, Y , one can apply the AR models to the n-th order
differences, resulting in ARIMA models.



230 C. N. Mavridis et al.

3.2 Leader Detection Based on Granger Causality

The leader-particle relationship is causal, satisfying both assumptions of Granger
Causality. In order to make sure that we capture causality, and not merely
correlation, we follow the hypothesis test described in Sect. 3.1 for each pair of
particles (i, j).

As a result, a particle i votes for j to be the leader, where each vote takes the
value Gij , with G = 1[p<α] indicating Granger Causality, where p is the p-value
according to the χ2 distribution as argued in Sect. 3.1.

However, because of the high correlation between the trajectories of the
particles-followers, it is often the case thatGij + 1 even between two followers. In
order to avoid such confusion, we bypass the last quantization step Gij = 1[p<α],
and compare directly the p-values. Going one step further, we can see that the
lowest p-value, corresponds to the highest F̂ -value. Moreover, the profile of the
F̂ij values is such that F̂ij is consistently higher (i.e. lower variance) for every
i, when j is the leader. In other words, even though for a follower j, a set of
F̂ij values may be high, indicating that particles with different indices i may be
leaders, for each i, a high fluctuation on the observed values F̂ij is indicative
of a false positive, i.e. that particle i is not a leader. Therefore, we define the
proposed leader detection algorithm to be based on the measure

Fv,j =
µ̂F̂·j

σ̂F̂·j

=
∑

i"=j F̂ij√
N

∑
i"=j F̂

2
ij −

(∑
i"=j F̂ij

)2

for each j. The measure Fv,j can be thought of as the inverse coefficient of vari-
ation, and is designed such that particles i with high variation on the observed
values F̂ij , for different followers-voters j, are not selected as leaders. The detec-
tion algorithm is shown in Algorithm1.

Algorithm 1. F -Based Leader Detection Algorithm
Require: w(big enough), t, λ

for i in {1, . . . , N + 1} do
for j != i do

In the window [t − w, t]:
Compute F̂ij

Compute Fv,j = Fv,j =
µ̂F̂·j

σ̂F̂·j
end for

end for
Select the leader: LF ← argmaxj Fv,j

4 Estimating the Number of Leaders

The first question one needs to answer when dealing with leader detection is the
number of leaders that the algorithm is trying to find. We view this problem as
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a clustering problem given a window of position and velocity observations of the
particles, since it is reasonable to assume that particle trajectories will be more
‘similar’ to each other if they are following the same leader.

However, the number of the clusters is not known a priori, which makes stan-
dard clustering algorithms based on Vector Quantization (e.g. k-means) inappro-
priate for this application. Instead, we need an unsupervised learning algorithm
that progressively estimates the number of clusters by adding new clusters only
when some measure of distortion is high enough to support this decision. In this
regard, the Deterministic Annealing algorithm [28] is a fitting clustering algo-
rithm for estimating the number of leaders and is presented in the next Section.

4.1 Deterministic Annealing

The observation of annealing processes in physical chemistry motivated the use of
similar concepts to avoid local minima of the optimization cost. Certain chemical
systems can be driven to their low-energy states by annealing, which is a gradual
reduction of temperature, spending a long time at the vicinity of the phase
transition points.

Deterministic Annealing (DA), proposed by Rose [28], is an annealing opti-
mization method that tries to achieve a good compromise between the world
of stochastic relaxation, or simulated annealing [15], and the world of deter-
ministic optimization. On the one hand it is deterministic, meaning that we do
not want to be wandering randomly on the energy surface while making incre-
mental progress on the average, as is the case for stochastic relaxation. On the
other hand, it is still an annealing method and aims at the global minimum,
instead of getting greedily attracted to a nearby local minimum. One can view
DA as replacing stochastic simulations by the use of expectation. An effective
energy function, which is parameterized by a (pseudo) temperature, is derived
through expectation and is deterministically optimized at successively reduced
temperatures.

The Optimization Problem. The problem of divergence-based Vector Quan-
tization can be stated as an optimization problem:

Problem 1. Let X : Ω → S be a random variable defined in the probability
space (Ω,F ,P), and d : S × ri(S) → [0,∞) be a divergence measure, with ri(S)
representing the relative interior of S. Let V := {Sh}kh=1 be a partition of S with
respect to d and M := {µh}kh=1, such that µh ∈ ri(Sh), h ∈ K, K := {1, . . . , k},
and define the quantizer Q : S → S such that Q(X) =

∑k
h=1 µh1[X∈Sh].

Then the problem is formulated as

min
M,V

J(Q) := EX [d (X,Q(X))]

The distortion function J is typically non convex and riddled with poor local
minima. In order to deal with this phenomenon, soft-clustering approaches have
been proposed as a probabilistic framework for clustering, where input vectors
are assigned to clusters in probability.
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For the randomized partition we can rewrite the expected distortion as

D = E [dφ(X,M)]
= E [E [dφ(X,M)|X]]

=
∑

x

p(x)
∑

µ

p(µ|x)dφ(x, µ)

where p(µ|x) is the association probability relating the input vector x with the
codevector µ. At the limit where the association probabilities are hard and each
input vector is assigned to a unique codevector with probability one, this becomes
identical with the traditional hard clustering distortion.

We seek the distribution that minimizes D subject to a specified level of
randomness, measured by the Shannon entropy

H(X,M) = E [− log p(X,M)]
= H(X) +H(M |X)
= E [− log p(X)] + E [E [− log p(M |X)|X]]

= H(X) −
∑

x

p(x)
∑

µ

p(µ|x) log p(µ|x)

by appealing to Jaynes’s maximum entropy principle [13] which states: of all the
probability distributions that satisfy a given set of constraints, choose the one
that maximizes the entropy.

The optimization is conveniently formulated as the minimization of the
Lagrangian

F = D − TH (9)

where F represents the free energy and T is the temperature parameter that
acts as a Lagrange multiplier. Clearly, for large values of T we maximize the
entropy, and, as T is lowered, we trade entropy for reduction in distortion.

As in the case of Vector Quantization, we form a coordinate block opti-
mization algorithm by successively minimizing with respect to the association
probabilities p(µ|x) and the codevector locations µ. Minimizing F with respect
to the association probabilities p(µ|x) is straightforward and gives the Gibbs
distribution

p(µ|x) = e−
dφ(x,µ)

T

∑
µ e

−
dφ(x,µ)

T

while, in order to minimize F with respect to the codevector locations µ we set
the gradients to zero

d

dµ
D = 0 =⇒ d

dµ
E [E [dφ(X,µ)|X]] = 0

=⇒
∑

x

p(x)p(µ|x) d

dµ
dφ(x, µ) = 0
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Remark 1. If dφ is a Bregman divergence [3,21], such as the Euclidean distance
or the Kulback-Leibler divergence, we get d

dµdφ(x, µ) = dφ
dµ (µ)(x − µ), which

allows for the direct computation of the optimal solution µ as the convenient
centroid form

µ = E [x|µ] =
∑

x xp(x)p(µ|x)
p(µ)

This deterministic optimization procedure takes place for decreasing values
of the temperature T such that DA maintains minimum free energy (thermal
equilibrium) while gradually lowering the temperature. Adding to the physical
analogy, it is significant that, as the temperature is lowered, the system under-
goes a sequence of “phase transitions”, which consists of natural cluster splits
where the cardinality of the codebook (number of clusters) increases. This is a
bifurcation phenomenon and provides a useful tool for controlling the size of the
clustering model relating it to the scale of the solution. At very high temperature
(T → ∞) the optimization yields uniform association probabilities

p(µ|x) = lim
T→∞

e−
dφ(x,µ)

T

∑
µ e

−
dφ(x,µ)

T

=
1
K

and all the codevectors are located at the same point

µ = E [X]

which is the expected value of X (in practice we get the sample mean of the
N realizations of X that we observe). As we lower the temperature, the cardi-
nality of the codebook changes. The bifurcation occurs when a set of coincident
codevectors splits into separate subsets, which can be traced when the Hessian
of F loses its positive definite property. In other words, the effective number of
codevector depends only on the temperature parameter which is the Lagrange
multiplier of the multi-objective minimization problem (9).

We can approach the bifurcation using perturbation analysis. At each temper-
ature, we can generate a perturbed pair of codevectors for each effective cluster
which, after convergence, can either merge together or separate depending on
whether a phase transition has occurred.

The Algorithm. A computationally efficient implementation of the DA algo-
rithm for clustering can be constructed in this way. The complete algorithm
is shown in Algorithm2 and constitutes a batch unsupervised learning algo-
rithm that provides the ability to trade complexity for accuracy by progressively
increasing the model size (number of efficient clusters) when needed (when a
critical temperature has been reached). Furthermore, as argued in Remark 1,
when dφ is a Bregman divergence [3,21], such as the Euclidean distance or the
Kulback-Leibler divergence, the optimization steps can be solved analytically
providing a computationally efficient implementation.



234 C. N. Mavridis et al.

Algorithm 2. Deterministic Annealing Algorithm
Require: Dataset X # |X | = N

Set parameters:
Kmax # maximum number of codevectors
Tmax, Tmin # maximum and minimum temperatures

Initialize:
K = 1 # number of codevectors
T = Tmax > 2λmax(Cx) # temperature
µ1 =

∑
x xp(x), p(µ1) = 1 # 1st codevector

while K < Kmax and T > Tmin do
Replace each µi with a perturbed pair {µ′

i, µ
′′
i }

Update:
p(µ′

i) = p(µ′′
i ) = p(µi)/2

K ← 2K
repeat # Step (O)

for i = 1, . . . ,K do
Update:

p(µi|x) ← p(µi)e
−

dφ(x,µi)
T

∑
i p(µi)e

−
dφ(x,µi)

T

, ∀x # Step (E)

p(µi) ←
∑

x∈X p(x)p(µi|x) # Step (M1)

µi ←
∑

x∈X xp(x)p(µi|x)
p(µi)

# Step (M2)
end for

until Convergence # ‖∆µi‖ < εc, ∀i
Keep only effective codevectors:
if ‖µi − µj‖ < εn then

discard µj

set p(µi) ← p(µi) + p(µj), ∀i != j
end if
Update K
Lower the temperature # T ← γT

end while
Do one hard-clustering loop # Step (O) with T = 0

5 Learning the Particle Interaction Laws

For the learning task we model the networked system of interacting agents as a
port-Hamiltonian system representing a general Cucker-Smale model (5) [20]. We
make use of the position and velocity trajectories of the particles to recover the
resistive terms R(z) and the Hamiltonian H(z), which is equivalent to recovering
the interaction functions ψij(x, v) of a general Cucker-Smale model (2).

The components of the interaction model (resistive element and the spring
Hamiltonian) are modeled as neural-networks with one hidden layer, and the
following optimization problem with a mean square error (MSE) loss function is
formulated
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minw 1
n

∑n
i=1 ‖ż(ti) − ˙̂z(ti;w)‖2 (10)

s.t. ż(ti) = [J(z(ti)) − R(z(ti))] ∂H(z(ti))
∂z + g(z)u (11)

˙̂z(ti;w) =
[
J(z(ti)) − R̂(z(ti;w))

]
∂Ĥ(z(ti;w))

∂z + g(z)u, (12)

where n is the number of time samples, w = {W [0], b[0],W [1], b[1]} is the set
of optimization variables, and (̂·) represents quantities estimated by the neural
networks.

We approach the solution w∗ of (10) with respect to

Vp(θ) :=
tf∑

τ=t0

‖ż∗(τ) − ż(τ)‖2

with an iterative gradient descent method

θn+1 = θn − αn(∇θVp(θn)), n = 0, 1, 2, . . . (13)

where the iteration maps αn : R2 → R2, n ≥ 0 are defined in accordance with the
Adam method of moments for stochastic optimization [14], and the computation
of the gradient vectors is implemented using automatic differentiation [17].

The term g(z)u is not estimated, but, instead, the actual trajectories of the
leader particles are used, which incorporate the effect of this term. This requires
the knowledge of the leader particles, as well as the followers of each leader.
This is provided by the proposed algorithms for leader detection, presented in
Sects. 3 and 4. In order to create a scalable learning system, we have focused on
the Pytorch [26] deep learning platform that, in addition to automatic differen-
tiation, is endowed with ODE solver capabilities.

6 Experimental Results

6.1 Case of One Leader

We showcase the proposed algorithm in the complex swarm movements shown
in Fig. 3 and 5, where the trajectories of the particles are generated by the
Cucker-Smale and extended Boids models with one leader, respectively.

We simulated the system of ODEs of the port-Hamiltonian system in (5),
with the interaction function as reconstructed by the trained neural network,
which resulted in the reconstructed particle trajectories that are depicted in
Fig. 4 and 6.
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Fig. 3. An example of 2D particle trajectories of a swarm following the dynamics of a
Cucker-Smale model with one leader.

Fig. 4. The actual (blue) and estimated (red) trajectory of the position of a random
agent over time for 20s (y-axis in arbitrary units). (left) The x-coordinate. MSE% =
0.0004. (right) The y-coordinate. MSE% = 0.0001. (Color figure online)

Fig. 5. An example of 2D particle trajectories of a swarm following the dynamics of
an extended Boids model with one leader.

Fig. 6. The actual (blue) and estimated (red) trajectory of the position of a random
agent over time for 20s (y-axis in arbitrary units). (left) The x-coordinate. MSE% =
0.1357. (right) The y-coordinate. MSE% = 0.1819. (Color figure online)
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We note that the rule-based Boids model generates more jerky trajectories
compared with the Cucker-Smale dynamical system and the reconstruction is
less than ideal, as expected. This is an indication, however, that the proposed
methodology is robust to noisy data generated by a model of unknown form.

6.2 Case of Multiple Leaders

We showcase the proposed algorithm in the complex swarm movement shown in
the Fig. 7. where the trajectories of the particles are generated by the CS model
with leadership with two leaders.

Fig. 7. An example of 2D particle trajectories of a swarm following the dynamics of a
Cucker-Smale model with two leaders.

In order to apply our port-Hamiltonian based learning algorithm, we first
estimate the sets L(i), 1 ≤ i ≤ N with our leader detection algorithm presented
in Sects. 3 and 4. The results of the reconstruction of the interaction function
are shown in Fig. 8.

Fig. 8. The actual (blue) and estimated (red) particle interaction function of a swarm
following the dynamics of a CS model with two leaders. The x- and y-axes are in
arbitrary units. The mean squared error is MSE = 0.193657. The x-axis corresponds
to the relative distance between a particle and its neighbor. (Color figure online)
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7 Conclusion and Discussion

In this work we focus on the problem of defending against adversarial attacks
by artificial UAV swarms. The swarms can be driven by multiple dynamically
changing leaders and perform highly complex maneuvers. Existing air defense
infrastructure is largely inadequate when dealing with the sheer number of agents
in the swarm. In this research we propose a method which enables the identifi-
cation of the leaders of the swarm, as well us the underlying coordination laws.
This is the first and most challenging task in the defense strategy against hostile
swarm attacks in existing air defense systems.

We develop a leader detection scheme based on the notion of Granger causal-
ity, relying on short-time observations of the trajectories of the UAVs. We then
proceed with the online estimation of the swarm’s coordination laws, modeled by
a generalized Cucker-Smale model with non-local repulsive potential functions
and dynamically changing leaders, through an appropriately defined iterative
optimization algorithm. The proposed methodology is robust to both missing
data and noise and is validated using simulation data of complex swarm move-
ments.

While the key focus of this work is related to the defense against hostile UAV
swarms, similar problems are found in many other types of large networked sys-
tems, including communication and computer networks, sensor networks, net-
worked cyber-physical systems, biological systems, and social networks over the
Internet. In such systems there are corresponding notions of leaders, such as ini-
tiators of a malicious attack, coordinators of malevolent behavior, initiators of a
biological cell-malfunction, or influential sources of miss-information or untrust-
worthiness. In all these problems fast identification of the leaders and the associ-
ated follower groups (or influence groups) is essential for defending and correcting
such malevolent actions and functions. Thus the applicability of the ideas and
methods proposed in this work is very broad, with the appropriate modeling and
semantic changes for the various domains. Important directions of our current
and future research include extensions of the framework and algorithms to these
broader domains, as well as the utilization of game theoretic methods for their
analysis (non-cooperating, cooperating and mean-field games).
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