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Abstract— We propose a family of parametric interaction
functions in the general Cucker-Smale model such that the
mean-field macroscopic system of equations can be iteratively
solved in an optimization scheme aiming to learn the inter-
action dynamics of the microscopic model from observations
of macroscopic quantities. We treat the interaction functions as
Green’s functions for a semi-linear Poisson differential operator,
which allows the transformation of the non-local interaction
terms of the macroscopic model into a system of PDEs.
The resulting system of hydrodynamic equations is efficiently
solved as part of an iterative learning algorithm that estimates
the interaction function from particle density evolution data.
Finally, we utilize the proposed interaction function model to
formulate an efficient learning algorithm based on observations
from particle trajectories, and discuss the trade-offs associated
with each approach.

I. INTRODUCTION
Extracting the laws of interaction between agents of net-

worked systems, ranging from power systems and chemical
reaction networks, to animal flocks and UAV swarms, is
a fundamental challenge in many areas of science and
engineering [1], [2], [3], [4], [5], [6].

Statistical [7], [8], and, mainly, model-based [2], [3], [9]
learning approaches have been used to infer interaction rules
between particles. In [10] symbolic equations are generated
from the numerically calculated derivatives of the system
variables, in [11] the constitutive equations of physical com-
ponents composing the system are learned, while in [12] the
order of a fractional differential system of equations, which
models the system, is estimated. Recently, Matei et al. in
[9] have modeled the network as a port-Hamiltonian system
[13] consisting of interconnected generalized mass-spring-
damper systems, and reconstructed the laws of interaction
and its dynamical properties.

There are generally two broad approaches in modeling the
underlying dynamics of ensembles of self-organizing agents:
the microscopic particle models described by ordinary or
stochastic differential equations, and the macroscopic con-
tinuum models, described by partial differential equations.
Agent-based models assume behavioral rules at the individ-
ual level, such as velocity alignment, attraction, and repulsion
[2], [3], [4], [5], while macroscopic models, consider large
number of interacting agents, approaching the mean-field
limit, and consist of a system of compressible hydrodynamic
PDEs [14], [15], defined on macroscopic quantities.

While particle models are widely used in numerical simu-
lations and learning procedures, [9], [12], useful real-life data
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of particle trajectories is difficult to extract [5], [12], and may
require substantial memory and computation resources. The
experimental measurements usually involve video recordings
and are subject to noise mainly because particle trajectories
seem to overlap. Additional distortions are introduced from
the computer vision methods used to reconstruct three-
dimensional trajectories, and the estimation of velocities
from position observations [5], [12], [16], [17]. On the
other hand, useful approximations of the ensemble’s density
evolution can be easier to extract, often by applying simple
morphological operators on video recordings. For this reason,
developing learning algorithms based on the macroscopic
quantities can play a crucial role in the analysis of collective
motion, but remains inhibited due to computational expense,
since the flocking dynamics can be non-local as well as
nonlinear [15], which results in a costly computation of the
solution of the corresponding hydrodynamic equations [12].

In this work, we modify the classical Cucker-Smale model
of nonlocal particle interaction for velocity consensus [3],
[18] so that we can efficiently solve the macroscopic hy-
drodynamic equations in an iterative optimization scheme to
reconstruct the interaction function from density evolution
data. We propose a family of parametric interaction functions
that are treated as Green’s functions associated with an
appropriately defined semi-linear Poisson partial differential
operator, which allows for the transformation of the macro-
scopic hydrodynamic integro-differential equations into an
augmented system of PDEs and speeds-up the computation
of the non-local interaction terms. We investigate the con-
ditions under which time-asymptotic flocking is achieved,
and utilize the computational advantages of the proposed
methodology to construct a learning algorithm to estimate
the interaction function based on observations of the particle
density evolution. Finally, an efficient learning algorithm
based on the particle trajectories is also studied. Making
use of the proposed interaction function model significantly
reduces the number of parameters to be estimated, and
provides an approximation of the interaction function that
is meaningful over its entire domain.

The rest of the manuscript is organized as follows: Section
II defines the Cucker-Smale flocking dynamics and its mean-
field limit. Section III introduces the semi-linear Poisson
mediated interaction functions and the conversion of the
macroscopic equations to a system of PDEs. In Sections
IV and IV the learning problems based on observations of
density evolution and particle trajectories, respectively, are
formulated. Finally, Section VI presents the numerical results
and Section VII concludes the paper.
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II. MATHEMATICAL MODELS

In this section we introduce the Cucker-Smale particle
dynamics, define time-asymptotic flocking, and derive the
mean-field macroscopic equations.

A. The Cucker-Smale Model

Consider an interacting system G of N identical particles
(representing autonomous agents) with unit mass in Rd ,
d ∈ {1,2,3}. Let xi(t), vi(t) ∈Rd represent the position and
velocity of the ith-particle at each time t ≥ 0, respectively, for
1≤ i≤N. Then the general Cucker-Smale dynamical system
[3] of (2N) ODEs read as:{

dxi
dt = vi
dvi
dt = 1

N ∑
N
j=1 ψ(x j,xi)(v j− vi)

(1)

where xi(0), are vi(0) are given for all i = 1, . . . ,N, and
ψ : Rd×Rd → R represents the interaction function between
each pair of particles.

The center of mass system (xc,vc) of G = {(xi,vi)}N
i=1 is

defined as

xc =
1
N

N

∑
i=1

xi, vc =
1
N

N

∑
i=1

vi (2)

We are interested in ψ being symmetric, i.e., ψ(x,s) =
ψ(s,x), in which case system (1) implies

dxc

dt
= vc,

dvc

dt
= 0 (3)

which yields the unique solution

xc(t) = xc(0)+ tvc(0), t ≥ 0 (4)

Under additional assumptions on ψ (Section ??), system
(1) converges to a velocity consensus under spatial coher-
ence, known as time-asymptotic flocking, and defined as:

Definition 1 (Asymptotic Flocking). An N−body interacting
system G = {(xi,vi)}N

i=1 exhibits time-asymptotic flocking
with bounded fluctuation if and only if the following two
relations hold:
• (Velocity alignment): The velocity fluctuations approach

zero asymptotically, i.e.

lim
t→∞

N

∑
i=1
‖vi(t)− vc(t)‖2 = 0

• (Spatial coherence): The position fluctuations are uni-
formly bounded, i.e. for some 0 < Λ < ∞,

sup
0≤t≤∞

‖xi(t)− xc(t)‖< Λ, ∀i ∈ {1, . . . ,N}

Throughout this paper, we will be working with the
fluctuation variables around the center of mass system

(x̂i, v̂i) := (xi− xc,vi− vc) (5)

which can be shown to satisfy the same dynamics (1).
Following the spatial coherence of the flocking behavior, the
position variables x̂i will be defined in a compact support
D :=

{
x ∈ Rd : ‖x‖< L/2

}
for some finite L > 0 and for all

i∈ {1, . . . ,N}, with ‖·‖ representing the standard l2-norm in
Rd and d ∈ {1,2,3}. We note that transformation (5) only
requires the knowledge of the initial conditions xi(0) and
vi(0), i = 1, . . . ,N.

B. The Mean-Field Limit

Consider the joint probability triple of the entire particle
system {Ω := R2Nd ,B(Ω),Pxv}, the state space for each
particle {R2d ,B(R2d)} and define the empirical (random)
probability measure FN

xv : Ω× [t0, t f ]×B(R2d)→ [0,1] such
that

FN
xv(t,A) :=

1
N

N

∑
i=1

IA((xi(t),vi(t))) (6)

where IA(·) is the indicator function, A ∈B(R2d). Other au-
thors use Dirac measures (not the Dirac delta function) in this
definition. FN

xv is a random measure which is purely atomic.
Using arguments originally due to McKean and Vlasov [19],
[20], it can be shown that there exists a deterministic and
continuous F∗xv such that FN

xv
a.e.→ F∗xv in the weak-* sense,

and that the joint probability density f ∗xv : [t0, t f ]×R2d →
R+ associated with this measure, evolves according to the
forward Kolmogorov equation on [t0, t f ]×R2d :

∂t f ∗xv +∇x · (v f ∗xv)+∇v · (F f ∗xv) = 0

F(t,x,v) :=
∫
R2d

ψ(x,s)(w− v) f ∗xv(t,s,w)dsdw.
(7)

We define the marginal probability density ρ : [t0, t f ]×
D→ R+ (henceforth referred to only as density)

ρ(t,x) :=
∫
Rd

f ∗xv(t,x,v)dv (8)

and the momentum density m : [t0, t f ]×D→ Rd and bulk
velocity u : [t0, t f ]×D→ Rd

m(t,x) :=
∫
Rd

v f ∗xv(t,x,v)dv := ρ(t,x)u(t,x) (9)

where D ⊆ Rd . It is additionally assumed that ρ,m,u are
compactly supported. Substituting in (7), we obtain the (d+
1) compressible Euler equations (see also [21]) on [t0, t f ]×D:{

∂tρ +∇x ·m = 0
∂tm+∇x · (m⊗u) = ρLψ m−mLψ ρ

(10)

where
Lψ φ(t,x) =

∫
D

ψ(x,s)φ(t,s)ds. (11)

is an integral transform with kernel ψ : D×D→ R.

III. SEMI-LINEAR POISSON MEDIATED FLOCKING

Suppose that the kernel function ψ is a Green’s function
associated with some linear partial differential operator Lx :
C∞

C,R(D)→C∞

C,R(D), such that

Lxy(t,x) = φ(t,x) (12)

implies

y(t,x) =
∫

D
ψ(x,s)φ(t,s)ds (13)
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A classical example is the operator associated with the
Poisson equation that arises in self-gravitational hydrody-
namics [22]. Then, system (10) is equivalent to the aug-
mented system of (2d +2) partial differential equations:

∂tρ +∇x ·m = 0
Lxz = ρ

Lxy = m
∂tm+∇x · (m⊗mρ−1) = ρy− zm

(14)

Moreover system (14) defined on [t0, t f ]×D, with homo-
geneous Dirichlet boundary conditions, and initial conditions

ρ(0, x̂) = ρ0(x̂), v(0, x̂) = v0(x̂) (15)

is a well-posed Boundary Value Problem (BVP).
We adopt the semi-linear Poisson-mediated flocking model

of [23], and make use of the parametrized partial differential
operator

Lx :=− 1
2k

(∂ 2
x −λ

2) (16)

in the BVP (14), (15) with D :=
{

x ∈ Rd : ‖x‖< L/2
}

.
In the following, we will illustrate our analysis in the

one-dimensional case (d = 1) which can be generalized to
higher dimensions (Section VI-C). System (14) can now be
compactly written as

∂tU +∂xF(U) = S(Y,U)

LxY =U
(17)

where U := [ρ,m]T , F := [m,m2ρ−1]T , S := [0,ρy− zm]T ,
and Y := [z,y]T . The Green’s function ψ associated with the
BVP in (17) takes the form

ψ(x,s) =

{
Kα(s)β (x) s≤ x
Kα(x)β (s) s > x

(18)

where
K =− k

λ

1
eλL− e−λL

α(z) = 2cosh(λ (z+L/2))
β (z) = 2cosh(λ (z−L/2))

(19)

We note that the interaction function ψ in (18), and, as
a result, the flocking behavior of the system G, depends on
the bounded domain D in which it is defined as illustrated
in [23]. In addition, it can be shown (see [23], Section 4.1)
that under mild conditions on the initial conditions vi(0),
i = 1, . . . ,N, and the size of the domain L, the solution
{(xi(t),vi(t))}N

i=1, t ≥ 0, of system (1) satisfies the flocking
conditions of Definition 1.

IV. LEARNING THE INTERACTION FUNCTION FROM
DENSITY EVOLUTION

We utilize the proposed interaction function form (18),
(19), and the resulting system of PDEs (17), described in
Section III, to efficiently compute the macroscopic quantities,
i.e. the momentum and density, in a density-based learning
scheme, aiming to estimate the interaction function ψ .

A. Computational Methods

We start with the following proposition on the conserva-
tion of mas and momentum which is proved in [23]:

Proposition 1. If Y ∈ C∞

R,C(D), then mass and momentum
are conserved, i.e.

d
dt

∫
D

Udx =
∫

D
Sdx = 0. (20)

In order to solve the hyperbolic system and the elliptic
equations of (17), we use the following solvers.

1) Hyperbolic Solver: To solve the hyperbolic system of
(17), we apply the finite volume method [24]. We define
the sequence of points xs = {x0, ...,xi, ...,xN} which are the
centers of the cells Ii := [xi− 1

2
,xi+ 1

2
), and average the PDE

over these cells, which gives

1
λ (Ii)

d
dt

∫
Ii

Udx =− 1
λ (Ii)

∫
Ii

∂xFdx+
1

λ (Ii)

∫
Ii

Sdx (21)

where λ (·) is the Lebesgue measure. Assuming these are
identical, such that ∆x := λ (Ii)∀i, we can make use of the
divergence theorem, and replace the integrals of U,F,S with
their cell-averages, i.e. their midpoint values Ū , F̄ , S̄, in order
to obtain

d
dt

Ūi =−
1

∆x
(F̄i+ 1

2
− F̄i− 1

2
)+ S̄i (22)

where Ūi := Ū(xi), F̄i := F̄(xi), S̄ := S̄(xi). We employ the
second-order strong stability preserving Runge-Kutta scheme
[25] for time integration. For the fluxes, we assume piecewise
linearity and use the Kurganov-Tadmor flux [25] given by

F̄i+ 1
2

:=
1
2
[F∗i +F∗i+1−max{|u∗i |, |u∗i+1|}(U∗i+1−U∗i )]

U∗i+1 :=Ui+1−
∆x
2

minmod(
Ui+2−Ui+1

∆x
,
Ui+1−Ui

∆x
)

U∗i :=Ui +
∆x
2

minmod(
Ui+1−Ui

∆x
,
Ui−Ui−1

∆x
)

(23)

where minmod(a,b) := 1
2 (sign(a)+ sign(b))min(|a|, |b|).

2) Elliptic Solver: To solve the elliptic equations of (17),
we apply the classical second-order finite difference method,
which reads as

y j
i+1−2y j

i + y j
i−1

∆x2 −λ
2y j

i =−2kU j
i (24)

Over the interior points, this yields linear equations

(
1

∆x2 A−λ
2I)y j

int =−2kU j
int −

1
∆x2

[
y j

0 0 . . . 0 y j
N

]T

(25)
where A is the (1,−2,1) tridiagonal matrix.

Therefore banded matrix algorithms [26] can be used
to solve the corresponding system of equations quickly, as
shown in Fig. 1.
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Fig. 1. Computation Times for Nonlocal Terms. Using finite differences
is much faster than computing a convolution (Riemann) sum, even when
parallelism of the sum is exploited.

B. The learning algorithm

We formulate the process of learning the interaction func-
tion ψ from density data as an optimization problem:

min
k,λ

t f

∑
τ=t0

DKL(FN
x [τ,xs]||F∗x [τ,xs]) (26)

where {F∗x [τ,xs]}t f
τ=t0 and

{
FN

x [τ,xs]
}t f

τ=t0
are the discretized

time sequences of the empirical and mean-field probability
measures, respectively, evaluated at the sequence of points xs
defined in Section IV-A.1. The density associated with F∗x ,
the mean-field density ρ , is subject to (17) (and therefore
dependent on θ := (k,λ )) and the Kullback-Leibler (KL)
divergence DKL between two distinct probability measures
Fi,Fj, both defined in {Ω,B(Ω)}, with associated densities
ρi,ρ j is given by

DKL(Fi||Fj) :=
∫

Ω

log2
dFi

dFj
dFi =

∫
Ω

ρi log2
ρi

ρ j
dx (27)

We approach the solution θ ∗ := (k∗,λ ∗) of (26) with
respect to Vd(θ) := ∑

t f
τ=t0 DKL(FN

x [τ,xs]||F∗x [τ,xs]), with the
iterative relation

θ
n+1 =−Ĥ−1(θ n)∇θVd(θ

n) (28)

where Ĥ is a positive-definite approximation of the Hessian
computed via the Lanczos iteration [27].

We note that in each iteration of the learning algorithm, the
solution of the BVP associated with the system of PDEs (17)
must be numerically computed, which has become feasible
due to the computational advantages originating from the
use of the proposed linear operator Lx (16), and presented
in Section IV-A and Fig.1.

V. LEARNING THE INTERACTION FUNCTION FROM
PARTICLE TRAJECTORIES

The proposed interaction function form (18), (19), de-
scribed in Section III, can also be used to efficiently estimate
the interaction function ψ in a particle-based learning scheme
given observations of the particle trajectories.

The advantage of using the interaction function model
(18), (19), in learning the interaction dynamics of a swarm
from particle trajectories is twofold. First, the number of
parameters to be estimated becomes really small, especially
compared to a general regression function such as a neural

network [9], which reduces the amount of data required for
convergence. Secondly, every update in the optimization al-
gorithm will improve the estimate of the interaction function
over the entire domain D, and not only over a small subset
Do ⊂D where the distances between each pair of interacting
particles happen to be observed, as opposed to using general
regression models such as polynomial functions and neural
networks.

As shown in [9], the Cucker-Smale model (1) is equivalent
to a fully connected N-dimensional network of generalized
mass-spring-dampers with appropriately defined Hamiltonian
functions, that can be written in an input-state-output port-
Hamiltonian form [13]:

ż = [J(z)−R(z)]
∂H(z)

∂ z
(29)

where z = (q, p), with q, p ∈ R
N(N−1)

2 being the vectors of
relative distances and momenta between each pair of parti-
cles, and the quantities J =−JT , H and R are appropriately
defined. The dependence of (29) on the interaction function
ψ is introduced by the resistive term R = R(ψ) [9].

We formulate the learning process as a least-squares
optimization problem

min
k,λ

t f

∑
τ=t0

‖ż∗(τ)− ż(τ)‖2 (30)

where z∗ represent the observed trajectories, and z are subject
to (29).

We approach the solution θ ∗ := (k∗,λ ∗) of (30) with
respect to Vp(θ) := ∑

t f
τ=t0 ‖ż∗(τ)− ż(τ)‖2, with an iterative

gradient descent method

θ
n+1 = θ

n−αn(∇θVp(θ
n)), n = 0,1,2, . . . (31)

where the iteration maps αn : R2→R2, n≥ 0 are defined in
accordance with the Adam method of moments for stochas-
tic optimization [28], and the computation of the gradient
vectors is implemented using automatic differentiation [29].

VI. NUMERICAL RESULTS AND HIGHER DIMENSIONS

We illustrate our results in the domain D = [−π,π] (L =
2π), with initial density and bulk velocity given by

ρ0(x̂) =
π

2L
cos(

π x̂
L
), (32)

u0(x̂) =−csin(
π x̂)
L

), x̂ ∈ D, c > 0 (33)

i.e. assuming that ρ0(x̂) = u0(x̂) = 0, ∀x̂ /∈ D, where x̂ is as
defined in (5).

The system of particle equations (1) is numerically solved
using the velocity Verlet algorithm [12]. In all simulations,
we take λ = 1, k = 4. The agreement between the solutions
of the particle model (1) and the macro-scale model (14) for
N = 104, ∆x̂ = 2π

600 , and ∆t = .001 is shown in Fig. 2.
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Fig. 2. Evolution of the densities ρ(t, x̂) and momentum profiles m(t, x̂) as
computed by solving the macro-scale model and the particle model (dashed-
line).
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Fig. 3. Reconstruction of the interaction function ψ using observations
of density evolution data. (up) Estimated interaction functions ψ(x̂ = 0, ŝ).
(down) Estimated equilibrium densities ρ∞(x̂)

A. Learning from density data

In order to accurately evaluate the learning scheme defined
in Section IV, we obtain the empirical density evolution data
ρN by first simulating the particle equations (1) with initial
conditions randomly generated from the initial density and
bulk velocity (33), and then taking the piecewise-constant
density discretization

ρ
N [ti,xs] :=

1
Nλ (I j)

µ({xk[ti] ∈ I j}) (34)

where λ (·) is the Lebesgue measure, µ(·) is the counting
measure, and Ii, x j are defined as in the formulation of the
finite volume method (Section IV-A).

The results are illustrated in Fig. 3. The parameters
(k̂∗, λ̂ ∗) = (4.0782,1.0069) ∼ (4,1) of the interaction func-
tion ψ were recovered and the Newton’s iteration converged
in 23 iterations.

We note that problem (26) is generally a non-convex op-
timization problem, and may be sensitive to initial estimates
of the parameters (k,λ ) leading to sub-optimal solutions
(k̂∗, λ̂ ∗) 6= (k∗,λ ∗). In addition, the objective function Vd :=
∑

t f
τ=t0 DKL(FN

x [τ,xs]||F∗x [τ,xs]) may practically converge to
zero event though (k̂∗, λ̂ ∗) 6= (k∗,λ ∗), suggesting non-unique
solutions of the learning problem (26) for some observation
data. This is a standard problem in non-convex iterative
optimization algorithms and is usually addressed with ob-
servation data of better quality (usually of larger quantity as
well), or repetitive application of the optimization algorithm
for randomly chosen initial conditions [30]. However, the re-
constructed ψ̂∗ := ψ(k̂∗, λ̂ ∗) may be used in the microscopic
model (1) to accurately reconstruct the actual observed
trajectories.

B. Learning from Particle Trajectories

In order to be able to assess the learning performance we
obtain the observed data of particle trajectories z∗ by simu-
lating the particle equations (1). The results are illustrated in

Fig. 4 where trajectory data of 100 particles have been used
in a time window of 0.2sec, corresponding to 20 time steps.
In the upper figure, the trajectories were generated using
the proposed interaction function (18), (19) for (k∗,λ ∗) =
(4.0,1.0) and the reconstructed parameters were (k∗,λ ∗) =
(4.0781,1.0004). In the lower figure, the trajectories were
generated using the Cucker-Smale interaction function

ψcs(x,s) =
K

(1+‖x− s‖2)γ
(35)

for (K,γ) = (1.0,3.0), and the algorithm converged with a
training loss Vp := ∑

t f
τ=t0 ‖ż∗(τ)− ż(τ)‖2 ≤ 10−5.

Fig. 4. Reconstruction of the interaction function ψ using observed
trajectories of interacting particles for 0.2 seconds. Illustration for x = 0.
(up) Particle trajectories simulated using the proposed interaction function.
(down) Particle trajectories simulated using the original Cucker-Smale
interaction function.

C. Higher Dimensions

The proposed methodology can be generalized in higher
dimensions, with the radial symmetry of the interaction
function ψ suggesting the use of singular kernels, which have
been extensively studied in the literature and, under mild
assumptions in the initial conditions, have been shown to
result in flocking behavior while, at the same time, avoiding
collisions [31].

In the BVP of the augmented system of PDEs (14), with
D :=

{
x ∈ Rd : ‖x‖< L/2

}
, we select the linear differential

operator

Lx =−k−d/2(∇2
x−λ

2) (36)

which is associated with a Green’s function of the form

ψ(x,s) = ψ̂(x− s)+φ(x,s) (37)

where ψ̂ is given by

ψ̂(x,s) = ψ̃(‖x− s‖)

=

(
k

2π

)d/2(
λ

‖x− s‖

)d/2−1

Kd/2−1(λ‖x− s‖)
(38)

with Kα(·) being the modified Bessel function of the second
kind of order α , and, it can be shown that ([23]),

φ(x,s) =−ψ̃(
2
L
‖x‖‖s− L2

4
x
‖x‖2 ‖). (39)

The interaction function ψ depends on the parameter
values k and λ as illustrated, for the 2-dimensional case,
in Fig.5.
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Fig. 5. The effect of the parameters k, λ on the profile of the interaction
function ψ((0,0.5),s), s ∈ B2(0,1). Left: (k,λ ) = (1,0.5). Right: (k,λ ) =
(2,10).

VII. CONCLUSION

Particle-based learning requires the solution of a large
system of ODEs, which can be computed using fast existing
numerical algorithms when the number of particles in not too
large. At the same time, actual data of particle trajectories
with high signal-to-noise ratio can hardly be found. On the
other hand, density-based learning assumes large number of
interacting particles and is based on density data, which can
be easier to extract from experimental recordings. Yet, it
requires the solution of a system of PDEs, which, although
much smaller, can be significantly difficult to compute.

In this work, we studied both a particle-based and a
density-based learning algorithm. First we proposed an it-
erative optimization algorithm for learning the interaction
dynamics of a general Cucker-Smale particle interaction
model from observations of the particle density evolution.
In doing so, we introduced a family of compactly supported
parametric interaction functions that allow for the mean-
field macroscopic system of hydrodynamic equations to be
efficiently solved as part of the learning scheme. Finally,
we made use of the proposed interaction function model to
formulate an efficient particle-based learning algorithm that
uses observations from particle trajectories.

VIII. ACKNOWLEDGEMENTS

This material is based upon work supported by the De-
fense Advanced Research Projects Agency (DARPA) under
Agreement No. HR00111990027 and partially by ONR grant
N00014-17-1-2622.

REFERENCES

[1] A. Okubo, “Dynamical aspects of animal grouping: swarms, schools,
flocks, and herds,” Advances in biophysics, vol. 22, pp. 1–94, 1986.

[2] C. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in ACM SIGGRAPH computer graphics, vol. 21, no. 4. ACM,
1987, pp. 25–34.

[3] F. Cucker and S. Smale, “Emergent behavior in flocks,” IEEE Trans-
actions on automatic control, vol. 52, no. 5, pp. 852–862, 2007.

[4] I. Giardina, “Collective behavior in animal groups: theoretical models
and empirical studies,” HFSP journal, vol. 2, no. 4, pp. 205–219, 2008.

[5] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani,
I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, et al.,
“Interaction ruling animal collective behavior depends on topological
rather than metric distance: Evidence from a field study,” Proceedings
of the national academy of sciences, vol. 105, no. 4, pp. 1232–1237,
2008.

[6] I. L. Bajec and F. H. Heppner, “Organized flight in birds,” Animal
Behaviour, vol. 78, no. 4, pp. 777–789, 2009.

[7] F. Lu, M. Zhong, S. Tang, and M. Maggioni, “Nonparametric inference
of interaction laws in systems of agents from trajectory data,” arXiv
preprint arXiv:1812.06003, 2018.

[8] S. Brunton, J. Proctor, and J. Kutz, “Discovering governing equations
from data by sparse identification of nonlinear dynamical systems,”
Proceedings of the National Academy of Sciences, vol. 113, no. 15,
pp. 3932–3937, 2016.

[9] I. Matei, C. Mavridis, J. S. Baras, and M. Zhenirovskyy, “Inferring
particle interaction physical models and their dynamical properties,”
in 2019 IEEE Conference on Decision and Control (CDC). IEEE,
2019, pp. 4615–4621.

[10] J. Bongard and H. Lipson, “Automated reverse engineering of non-
linear dynamical systems,” Proceedings of the National Academy of
Sciences, vol. 104, no. 24, pp. 9943–9948, 2007.

[11] I. Matei, J. de Kleer, and R. Minhas, “Learning constitutive equations
of physical components with constraints discovery,” in 2018 Annual
American Control Conference (ACC), June 2018, pp. 4819–4824.

[12] Z. Mao, Z. Li, and G. Karniadakis, “Nonlocal flocking dynamics:
Learning the fractional order of pdes from particle simulations,” arXiv
preprint arXiv:1810.11596, 2018.

[13] A. van der Schaft and D. Jeltsema, “Port-hamiltonian systems theory:
An introductory overview,” Foundations and Trends R© in Systems
and Control, vol. 1, no. 2-3, pp. 173–378, 2014. [Online]. Available:
http://dx.doi.org/10.1561/2600000002

[14] J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil, “Particle, kinetic,
and hydrodynamic models of swarming,” in Mathematical modeling
of collective behavior in socio-economic and life sciences. Springer,
2010, pp. 297–336.

[15] R. Shvydkoy and E. Tadmor, “Eulerian dynamics with a commutator
forcing ii: Flocking,” arXiv preprint arXiv:1701.07710, 2017.

[16] D. Chen, T. Vicsek, X. Liu, T. Zhou, and H.-T. Zhang, “Switching
hierarchical leadership mechanism in homing flight of pigeon flocks,”
EPL (Europhysics Letters), vol. 114, no. 6, p. 60008, 2016.
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