
Maximum-Entropy Progressive State Aggregation for Reinforcement
Learning

Christos N. Mavridis, Nilesh Suriyarachchi, and John S. Baras

Abstract— We propose a reinforcement learning algorithm
based on an adaptive state aggregation scheme defined by a
progressively growing set of codevectors placed in the joint
state-action space according to a maximum-entropy vector
quantization scheme. The proposed algorithm constitutes a
two-timescale stochastic approximation algorithm with: (a) a
fast component that executes a temporal-difference learning
algorithm, and (b) a slow component, based on an online
deterministic annealing algorithm, that adaptively partitions
the state-action space according to a dissimilarity measure that
belongs to the family of Bregman divergences. The proposed
online deterministic annealing algorithm is a competitive-
learning neural network that shows robustness with respect
to the initial conditions, requires minimal hyper-parameter
tuning, and provides online control over the performance-
complexity trade-off. We study the convergence properties of
the proposed methodology and quantify its performance in
simulated experiments. Finally, we show that the generated
codevectors can be used as training samples for sparse and
progressively more accurate Gaussian process regression.

I. INTRODUCTION

Reinforcement learning algorithms are being extensively
studied, not only due to their effectiveness in numerous
applications [1], [2], but also due to their promise to solve
difficult optimal control problems in an online and data-
driven fashion.

Temporal-difference learning methods dominate current
reinforcement learning algorithms due to their data effi-
ciency, and, when applied to a Markov decision process
with finite state and action spaces, they have been well
understood and quite successful [3]. However, because they
make use of look-up tables, they can hardly be used with
large or infinite state/action spaces due to the exponen-
tial increase of the number of states with respect to the
dimensionality of the space. For this reason, parametric
models have been widely used in reinforcement learning and
value function approximation [2], with linear combinations
of fixed basis functions, such as artificial neural networks,
being the staple [4]. While reinforcement learning algorithms
based on parametric models can deal with the dimensionality
issues, convergence properties can be difficult to establish,
especially in the nonlinear case or in off-policy scenarios
[3], and their performance in practice heavily depends on
the choice of the basis functions [5]. This choice is almost

The authors are with the Electrical and Computer Engineering
Department and the Institute for Systems Research, University of
Maryland, College Park, USA. emails:{mavridis, nileshs,
baras}@umd.edu

Research partially supported by the Defense Advanced Research Projects
Agency (DARPA) under Agreement No. HR00111990027, by ONR grant
N00014- 17-1-2622, and by a grant from Northrop Grumman Corporation.

solely experimental, and there is little understanding of the
size and complexity of the approximation model, which can
result in computationally expensive algorithms that can only
be trained in simulated environments by huge dedicated
computers units.

As a middle point between the two approaches, state
aggregation has been proposed as a quantization scheme for
large or infinite spaces [6], and can be viewed as a special
case of linear models with the basis functions being indicator
functions of a partition of the state/action space. Although
this simplicity of the feature space is often desirable, crude
approximation can decrease the overall performance of the
algorithm, while state aggregation schemes are typically
fixed and ad-hoc [7], which results to a sub-optimal rep-
resentation of the state/action space. In [8], an adaptive state
aggregation algorithm that updates the state partition with a
vector quantization algorithm while implementing a version
of Q-learning in the discretized space is proposed. This leads
to a better representation of the state space compared to
naive discretization with fewer number of discrete states.
This approach is able to use the online observations to create
a piece-wise constant approximation of the quality function
Q, but heavily depends on two major design parameters:
(a) the number of prototypes, which, defines the complexity
of the model, and (b) the initial conditions, that affect the
performance of the algorithm.

In this work, we extend this result by introducing an online
deterministic annealing algorithm for progressive maximum-
entropy state-action aggregation. The online deterministic
annealing algorithm is a prototype-based clustering algorithm
that is robust with respect to the initial conditions, and
provides a means to progressively adjust the number of
clusters used, via an intuitive bifurcation phenomenon that
controls the performance-complexity trade-off created by the
interplay of minimum-distortion and maximum-entropy [9],
[10]. The proposed algorithm constitutes a two-timescale
stochastic approximation algorithm with: (a) a fast compo-
nent that executes a temporal-difference learning algorithm,
and (b) a slow component for adaptive aggregation of the
state-action space, based on the online deterministic anneal-
ing algorithm. We study the convergence properties of the
proposed methodology and propose a way to incorporate
sparse Gaussian process regression, calculated on the pro-
gressively growing set of the generated codevectors, in order
to provide a smoother approximation of the quality function,
and an estimation of the uncertainty of the model in a region
of the state-action space. Finally, we validate the proposed
methodology in simulated experiments.

2021 60th IEEE Conference on Decision and Control (CDC)
December 13-15, 2021. Austin, Texas

978-1-6654-3659-5/21/$31.00 ©2021 IEEE 5144

20
21

 6
0t

h
IE

EE
 C

on
fe

re
nc

e
on

 D
ec

is
io

n
an

d
C

on
tro

l (
C

D
C

) |
 9

78
-1

-6
65

4-
36

59
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
D

C
45

48
4.

20
21

.9
68

29
27

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on May 09,2025 at 16:26:47 UTC from IEEE Xplore. Restrictions apply.

II. MATHEMATICAL BACKGROUND AND NOTATION

We consider a discrete-time MDP (X,U,P, C) with X

being the state space, U being the action (control) space,
P : (x, u, x′) 7→ P [x′|x, u] being the transition probabil-
ities associated with a stochastic state transition function
f : (x, u) 7→ x′, and C : X×U→ R+, being the immediate
cost function, assumed deterministic. Reinforcement Learn-
ing (RL) examines the problem of learning a control policy
u := (u0, u1, . . .) that solves the discounted infinite-horizon
optimal control problem

min
u

E

[∞∑
l=0

γlC(xl, ul)

]
where γ ∈ (0, 1]. We define the value function V u of a policy
u as

V u(xk) : = E

[∞∑
l=k

γl−kC(xl, ul)

]
= C(xk, uk) + γE [V u(xk+1) | xk]

= Qu(xk, uk)

where Qu represents the quality function of a policy u,
i.e. the expected return for taking action uk at time k and
state xk, and thereafter following policy u. As a result of
Bellman’s principle, we get the (discrete-time) Hamilton-
Jacobi-Bellman (HJB) equation

V ∗(xk) : = min
u

E

[∞∑
l=k

γl−kC(xl, ul)

]
(HJB)

= min
u
{ C(xk, uk) + γE [V ∗(xk+1) | xk] }

= min
uk

Q∗(xk, uk)

(1)
where V ∗ := V u

∗
and Q∗ := Qu

∗
represent the optimal

value and Q functions, respectively. Reinforcement learning
algorithms consist mainly of temporal-difference learning
algorithms [11] that try to approximate a solution to (1)
using iterative optimization methods. The optimization is
performed over a finite set of parameters which are used
to describe the value (or Q) function. These parameters
typically correspond to a parametric model (e.g. a neural
network) used for function approximation, or to the different
values of the vector V (X) (or Q(X,U)), in which case X and
U are assumed finite either by definition or as a result of
discretization. In this work we will assume that the state and
action spaces are finite-dimensional vector spaces that have
been appropriately discretized in a finite set. When X and
U are finite, the Q-learning algorithm, which is a stochastic
approximation algorithm [12], can be used:

Qj+1(x, u′) = Qj(x, u
′) + αj [C(x, u′)

+ γmin
u
Qj(x

′, u)−Qj(x, u′)]

that provably asymptotically minimizes the mean-squared
Bellman error:

min
q

E
[
‖C(x, u) + min

u
{ γQ(x′, u) } − q‖2 | x

]
.

Q-learning depends on a stochastic exploration policy πL =
u′ which decides the next action given the observed state.
Given the policy πL, the original MDP becomes a Markov
Chain, and the Q-learning algorithm becomes an off-policy
TD(0) algorithm [3] for value function approximation.

III. STATE AGGREGATION WITH ONLINE
DETERMINISTIC ANNEALING

Unsupervised analysis can provide valuable insights into
the nature of a data space. In particular, vector quantization
[13] can reduce storage needs, reveal structures, such as
clusters in the data, or pre-process large datasets for further
analysis, through the representation of the data space by a set
of prototypes. Given a random variable X : Ω→ S defined
in the probability space (Ω,F,P), a quantizer Q : S → S
is defined such that Q(X) =

∑K
h=1 µh1[X∈Sh], where

V := {Sh}Kh=1 forms a partition of S and M := {µh}Kh=1

represents a set of codevectors such that µh ∈ ri(Sh), h ∈
{1, . . . ,K}. Given a dissimilarity measure d : S × ri(S)→
[0,∞) one seeks the optimal M,V in terms of minimum
average distortion:

min
M,V

D(Q) := E [d (X,Q(X))]

Vector quantization algorithms assume that Q is a deter-
ministic function of X and are proven to converge to lo-
cally optimal configurations even when formulated as online
learning algorithms [13]. However, their convergence prop-
erties and final configuration depend heavily on two design
parameters: (a) the number of clusters (neurons), and (b)
their initial configuration. To deal with this phenomenon, the
Online Deterministic Annealing approach [9] makes use of a
probabilistic framework, where input vectors are assigned to
clusters in probability, thus dropping the assumption that Q is
a deterministic function of X . For the randomized partition,
the expected distortion becomes:

D = E [dφ(X,Q)] = E [E [dφ(X,Q)|X]]

The central idea of deterministic annealing is to seek the
distribution that minimizes D subject to a specified level of
randomness, measured by the Shannon entropy

H(X,M) = H(X)− E [E [log p(Q|X)|X]]

with p(µ|x) representing the association probability relating
the input vector x with the codevector µ. This is essentially
a realization of the Jaynes’s maximum entropy principle [14]
which states: of all the probability distributions that satisfy a
given set of constraints, choose the one that maximizes the
entropy. The resulting multi-objective optimization is conve-
niently formulated as the minimization of the Lagrangian

F = D − TH (2)

where T is the temperature parameter that acts as a Lagrange
multiplier. Clearly, (2) represents the scalarization method
for trade-off analysis between two performance metrics. For
large values of T we maximize the entropy, and, as T is
lowered, we essentially transition from one Pareto point to

5145

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on May 09,2025 at 16:26:47 UTC from IEEE Xplore. Restrictions apply.

another in a naturally occurring direction that resembles an
annealing process. In this regard, the entropy H , which is
closely related to the “purity” of the clusters, acts as a
regularization term which is given progressively less weight
as T decreases. As is the case in vector quantization, one
minimizes F via a coordinate block optimization algorithm.
Minimizing F with respect to the association probabilities
p(µ|x) is straightforward and yields the Gibbs distribution

p(µ|x) =
e−

d(x,µ)
T∑

µ e
− d(x,µ)T

(3)

while, in order to minimize F with respect to the codevector
locations µ we set the gradients to zero

d

dµ
D = 0 =⇒ d

dµ
E [E [d(X,µ)|X]] = 0 (4)

Adding to the physical analogy, it is significant that, as the
temperature is lowered, the system undergoes a sequence of
“phase transitions”, which consists of natural cluster splits
where the cardinality of the codebook (number of prototypes)
increases. This is a bifurcation phenomenon that provides a
useful tool for controlling the size of the model relating it
to the scale of the solution. At very high temperature (T →
∞) the optimization yields uniform association probabilities
p(µ|x) = 1/K, and, all the codevectors are located at the
same point. As we lower the temperature, the cardinality
of the codebook changes. The bifurcation can be traced by
generating a perturbed pair of codevectors for each effective
cluster, which, after convergence, can either merge together
or get separated, depending on whether a phase transition
has occurred [9].

A. Bregman Divergences as Dissimilarity Measures

The proximity measure d need not be a metric, and
can be generalized to more general dissimilarity measures
inspired by information theory and statistical analysis. In
particular, the family of Bregman divergences, which in-
cludes the widely used Kullback-Leibler divergence, can
offer numerous advantages in learning applications compared
to the Euclidean distance alone [15]. Notably, in the case of
deterministic annealing, Bregman divergences play an even
more important role, since we can show that, if d is a Breg-
man divergence, the solution to the second optimization step
(4) can be analytically computed in a convenient centroid
form [9]:

µ∗ = E [X|µ] (5)

B. The online learning rule

In an offline approach, the approximation of the condi-
tional expectation E [X|µ] is computed by the sample mean
of the data points weighted by their association probabilities
p(µ|x). To define an online training rule for the deterministic
annealing framework, we formulate a stochastic approxima-
tion algorithm to recursively estimate E [X|µ] directly. As
a direct consequence of Theorem 4 in [9], the following
corollary provides an online learning rule that solves the op-
timization problem of the deterministic annealing algorithm.

Corollary 0.1: The online training rule{
ρi(n+ 1) = ρi(n) + β(n) [p̂(µi|xn)− ρi(n)]

σi(n+ 1) = σi(n) + β(n) [xnp̂(µi|xn)− σi(n)]
(6)

where
∑
n β(n) = ∞,

∑
n β

2(n) < ∞, and the quantities
p̂(µi|xn) and µi(n) are recursively updated as follows:

µi(n) =
σi(n)

ρi(n)
, p̂(µi|xn) =

ρi(n)e−
d(xn,µi(n))

T∑
i ρi(n)e−

d(xn,µi(n))

T

(7)

converges almost surely to a solution of the block optimiza-
tion (3), (5).
The learning rule (6), (7) is a stochastic approximation algo-
rithm [12] which can be used for the adaptive aggregation of
the state-action space X× U of a Markov decision process,
as shown in Alg. 1.The finite set {µi}Ki=1 = {(mi, vi)}Ki=1,
where mi ∈ X and vi ∈ U, constitutes an optimal repre-
sentation of X × U with respect to (2), and can be used as
is for piece-wise constant approximation or as the training
set for the Gaussian process regression algorithm. Notably,
the size of {(mi, vi)}i progressively increases with respect
to a trade-off between accuracy and complexity. A detailed
discussion on the implementation of Alg. 1 and the effect of
its parameters can be found in [9].

Algorithm 1 State-Action Aggregation Algorithm (ODA)

Select parameters and initial configuration {µi}
while K < Kmax and T > Tmin do

Perturb µi ← {µi + δ, µi − δ}, ∀i
Set n← 0
repeat

Observe state x
for i = 1, . . . ,K do

Update:

p(µi|x)← p(µi)e
−
dφ(x,µi)

T∑
i p(µi)e

−
dφ(x,µi)

T

p(µi)← p(µi) + βn [p(µi|x)− p(µi)]
σ(µi)← σ(µi) + βn [xp(µi|x)− σ(µi)]

µi ←
σ(µi)

p(µi)
n← n+ 1

end for
until Convergence
Keep effective codevectors
Lower temperature T ← γT

end while

IV. REINFORCEMENT LEARNING WITH ONLINE
DETERMINISTIC ANNEALING

We consider an MDP (X,U,P, C), where S ⊆ RdX ,
S ⊆ RdU are compact convex sets. We are interested in
the approximation of the quality function Q : X × U →
R+. To this end, we use the online deterministic annealing
(ODA) algorithm (Alg. 1) as an online greedy algorithm
that finds an optimal representation of the data space with

5146

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on May 09,2025 at 16:26:47 UTC from IEEE Xplore. Restrictions apply.

respect to a trade-off between minimum average distortion
and maximum entropy. We define a quantizer QP (x, u) =∑K
h=1 µh1[(x,u)∈Ph], where {Ph}Kh=1 is a partition of X×U.

The parameters µh := (mh, vh) define a state-action aggre-
gation scheme with k clusters (aggregate state-action pairs),
each represented by mh ∈ X and vh ∈ U, for h = 1, . . . ,K.
After convergence, if the representation is meaningful, the
finite set {µh}Kh=1, where µh ∈ X×U, can be used directly
for piece-wise constant approximation of the Q function, or,
as will be discussed bellow, as pseudo-inputs for Gaussian
process regression. We stress that the cardinality K of the set
of representatives of the space X×U is automatically chosen
by Alg. 1 and progressively increases as needed, with respect
to the complexity-performance trade-off.

A. The Algorithm
In essence, we are approximating the Q function with a

piece-wise constant parametric model with the parameters
that define the partition living in the data space and being
chosen by the vector quantization algorithm 1. However the
system observes its states and actions online while learning
its optimal policy using a temporal-difference reinforcement
learning algorithm. Therefore, the two estimation algorithms
need to run at the same time. This can become possible
by observing that Algorithm 1, as well as most temporal-
difference algorithms, are stochastic approximation algo-
rithms. Therefore, we design a reinforcement learning algo-
rithm as a two-timescale stochastic approximation algorithm
with (a) a fast component that updates the values Q :=
{Q(h)}Kh=1 with a temporal-difference learning algorithm,
and (b) a slow component that updates the representation
µ := {µh}Kh=1 based on Alg. 1. Such a framework can incor-
porate different reinforcement learning algorithms, including
the proposed algorithm presented in Alg. 2. The exploration
policy πL(h|µ) in Alg. 2 depends on the aggregate state h
and balances the ratio between exploration and exploitation
[16].

The convergence properties of the algorithm can be studied
by directly applying the theory of the O.D.E. method for
stochastic approximation in two timescales:

Theorem 1 (Ch. 6 of [12]): Consider the sequences
{xn} ∈ S ⊆ Rd and {yn} ∈ Σ ⊆ Rk, generated by the
iterative stochastic approximation schemes:

xn+1 = xn + α(n)
[
f(xn, yn) +M

(x)
n+1

]
(8)

yn+1 = yn + β(n)
[
g(xn, yn) +M

(y)
n+1

]
(9)

for n ≥ 0 and M (x)
n , M (y)

n martingale difference sequences,
and assume that

∑
n α(n) =

∑
n β(n) = ∞,

∑
n(α2(n) +

β2(n)) <∞, and β(n)/α(n)→ 0, with the last condition im-
plying that the iterations for {yn} run on a slower timescale
than those for {xn}. If the equation

ẋ(t) = f(x(t), y), x(0) = x0

has an asymptotically stable equilibrium λ(y) for fixed y and
some Lipschitz mapping λ, and the equation

ẏ(t) = g(λ(y(t)), y(t)), y(0) = y0

Algorithm 2 Reinforcement Learning Algorithm with ODA

Initialize µh, Q0(h), ∀h ∈ {1, . . . ,K}
repeat

Observe x and find

h = arg min
τ=1,...,k

dφ((x, u′), µτ)

Choose u′ = πL(h|µ)
Observe x′ = f(x, u′) and find

h′ = arg min
τ=1,...,k

dφ(x′, µ(τ))

Update Q(h):

Qi+1(h) = Qi(h) + αi[C(x, u′)

+ γmin
u
Qi(h

′)−Qi(h)]

if i mod N = 0 then
Update partition µ := {µh}Kh=1 using Alg. 1

end if
until Convergence
Update Policy:

u∗(x) = arg min
u

{ Q(h(x)) }

has an asymptotically stable equilibrium y∗, then, almost
surely, (xn, yn) converges to (λ(y∗), y∗).

Proposition 1: Algorithm 2 converges almost surely to
(µ∗, Q∗) where µ∗ is a solution of the block optimization
problem (3), (5), and Q∗ minimizes the temporal-difference
error:

Jh = ‖E
[
C(x, u) + γmin

u
Q(h′)|(x, u) ∈ Ph

]
−Q(h)‖2 (10)

where h = 1, . . . ,K, and {Ph}Kh=1 is a partition of X× U

with every Ph assumed to be visited infinitely often.
Proof: From Theorem 0.1, it follows that Algorithm (1)

is a stochastic approximation algorithm of the form (9) that
converges to a solution of (3), (5). Also (13) is a stochastic
approximation algorithm of the form (8), for f(Q(h)) =
−∇Q(h)Jh. The result follows from Theorem 1.

We note that the condition βi/αi → 0 is of great im-
portance. Intuitively, Algorithm 2 consists of two compo-
nents running in different timescales. The slow component
updates µ and is viewed as quasi-static when analyzing
the behavior of the fast transient Q which updates the
approximation of the quality function. As an example, the
condition βn/αn → 0 is satisfied by stepsizes of the form
(αn, βn) = (1/n, 1/1+n logn), or (αn, βn) = (1/n2/3, 1/n).
Another way of achieving the two-timescale effect is to run
the iterations for the slow component {µn} with stepsizes{
αn(k)

}
, where n(k) is a subsequence of n that becomes

increasingly rare (i.e. n(k+ 1)−n(k)→∞), while keeping
its values constant between these instants. In practice, it
has been observed that a good policy is to run the slow
component with slower stepsize schedule βn and update it
along a subsequence keeping its values constant in between

5147

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on May 09,2025 at 16:26:47 UTC from IEEE Xplore. Restrictions apply.

([12], Ch. 6). This explains the parameter N in Alg. 2 whose
value should increase with time.

B. Experimental Results

We illustrate the properties and quantify the performance
of the proposed methodology on the Cart-pole (inverted
pendulum) problem [17]. The state variable of the cart-pole
system has four components (x, θ, ẋ, θ̇), where x and ẋ are
the position and velocity of the cart on the track, and θ and
θ̇ are the angle and angular velocity of the pole with the
vertical. The cart is free to move within the bounds of a
one-dimensional track. The pole is free to move only in the
vertical plane of the cart and track. The action space consists
of an impulsive “left” or “right” force F ∈ {−10,+10}N of
fixed magnitude to the cart at discrete time intervals. The
transition function for the state x is xn+1 = xn + τ ẋ, where
τ = 0.02s. The initial state is set to X0 = (ux, uθ, uẋ, uθ̇)
where ux, uθ, uẋ, and uθ̇ follow a uniform distribution
U(−0.05, 0.05). Failure occurs when |θ| > 12◦ or when
|x| > 2.4m. An episode terminates successfully after Nt
timesteps, and the average number of timesteps N̂t ≤ Nt
across different attempts, is used to quantify the performance
of the learning algorithm. We use the squared Euclidean
distance as the Bregman divergence dφ.

In Fig. 1, we illustrate the main property of the pro-
posed adaptive state aggregation, which is the ability to
automatically adjust the number of the aggregate states
with respect to the observed state-action pairs. We focus
on the two-dimensional subspace (θ, θ̇) and visualize the
progression of the number and placement of the centroids
of the aggregate states generated by Alg. 2. In Fig. 1(f) we
show the codevectors corresponding to a naive discretization
for n = 11 bins per dimension. We note that the codevector
placement for Fig. 1 (f) is crucial for the performance of the
algorithm and was selected after experimentation. In contrast,
Alg. 2 shows increased performance and reduced time and
memory complexity, compared to the naive approach, while
automatically adapting the codevector placement to the state-
action observations.

In Fig. 2 we compare the average number of timesteps
(here Nt = 1000) with respect to the number of aggregate
states used, for three different state aggregation algorithms.
The first one is naive discretization without state aggregation,
the second is the SOM-based algorithm proposed in [8], and
the last is the proposed algorithm Alg. 2. We initialize the
codevectors µ by uniformly discretizing over Ŝ×{−10, 10},
for Ŝ = [−1, 1] × [−4, 4] × [−1, 1] × [−4, 4]. We use
K ∈ {16, 81, 256, 625} clusters, corresponding to a standard
discretization scheme with only n ∈ {2, 3, 4, 5} bins for
each dimension. As expected, state aggregation outperforms
standard discretization of the state-action space. The ability
to progressively adapt the number and placement of the
centroids of the aggregate states is an important property of
the proposed algorithm, 5 instances of which are presented
in Fig. 2 for different parameters Tmin, which result to
K ∈ {56, 118, 136, 202, 252} aggregate states. As shown,
the behavior of Alg. 2 depends on the temperature schedule

(a) Generated code-
vectors. K = 1.
N̂t = 9.3.

(b) Generated code-
vectors. K = 24.
N̂t = 15.2.

(c) Generated code-
vectors. K = 36.
N̂t = 38.4.

(d) Generated code-
vectors. K = 78.
N̂t = 69.5.

(e) Generated code-
vectors. K = 52.
N̂t = 197.4.

(f) Naive discretiza-
tion. K = 121.
N̂t = 153.1.

Fig. 1: (a)-(e):Illustration of the codevectors generated by
Alg. 2 until convergence in the two-dimensional state space
(θ, θ̇). (f) The codevectors corresponding to a naive dis-
cretization for n = 11 bins per dimension. Here Nt = 200.

T , as well as on hyperparameters such as the the profile of
the stepsizes αi and βi.

Fig. 2: Average number of timesteps (Nt = 1000) over
number of aggregate states used. (red) the proposed algo-
rithm. (black) Q-learning without state aggregation. (blue)
the SOM-based algorithm of [8].

V. SPARSE GAUSSIAN PROCESS REGRESSION WITH
ONLINE DETERMINISTIC ANNEALING

When used for state aggregation as described above, online
deterministic annealing can greatly improve the efficiency of
approximate Q-learning via a piece-wise constant approx-
imation of the Q function, according to an automatically
generated partition. For a smooth approximation, we can
use the codevectors generated by the online deterministic
annealing algorithm as a training set for Gaussian process
regression. In this way, we overcome the well known compu-
tational bottleneck of Gaussian processes (time complexity
of O(n3), where n is the number of known data points,
see also [21]), while making use of their non-parametric
regression properties that also allow for the quantification
of the uncertainty of the model in each region of the space
[18].

5148

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on May 09,2025 at 16:26:47 UTC from IEEE Xplore. Restrictions apply.

A. Gaussian Processes based on State Aggregation

A Gaussian Process is a distribution over the space of
functions where any subset of which has a Gaussian distri-
bution [18]. It can be used to estimate the quality function
of a pair (x, u) ∈ X × U given a representation µ and its
corresponding Q values, according to:

q(x, u|µ,Q) = k(x, u, µ)
T

(K(µ) + σ2I)−1Q (11)

where k(x, u, µ) = [k((x, u), µ1), . . . , k((x, u), µK)]. The
uncertainty of the prediction is also available for every point
(x, u), and is given in terms of the covariance:

Σ(x, u|µ,Q) = k((x, u), (x, u))

− k(x, u, µ)
T

(K(µ) + σ2I)−1k(x, u, µ) + σ2
(12)

The Q-learning update of Alg. 2:

Qi+1(h) = Qi(h) + αi[C(x, u′) + γmin
u
Qi(h

′)−Qi(h)]

becomes the temporal-difference algorithm:

Qi+1(h) = Qi(h) + αi[C(x, u′)

+ γmin
u
q(x′, u|µ,Qi)−Qi(h)]

(13)

where h = arg min
τ=1,...,k

dφ((x, u′), µτ), and N increases over

time, as explained above. The convergence of (13) can be
shown in a similar way as above, and minimizes the error:

Jh = ‖E
[
C(x, u) + γmin

u
q(x, u|µ,Q)|(x, u) ∈ Ph

]
−Q(h)‖2

(14)
where h = 1, . . . ,K, q(x, u|µ,Q) is given by (11) and
{Ph}Kh=1 is a partition of X× U with every Ph assumed to
be visited infinitely often. The exploration policy becomes
πL(x|µ,Q) which now depends on the actual state x, and
requires a Gaussian process prediction. In the case of the
ε-greedy policy [16], it is given by:

πL(x|µ,Q) =

{
r, if ε < εr

minu q(x, u|µ,Q), o.w.
(15)

where r is uniformly distributed in the action space U, ε is
uniformly distributed in [0, 1] and εr ∈ [0, 1] is a threshold
parameter that monotonically decreases over time. We note
that the inversion of matrix K during Gaussian process
prediction, need only be done when the partition parameters
µ are updated, which happens every N iterations of the
temporal-difference algorithm.

VI. CONCLUSION AND DISCUSSION

We introduced a reinforcement learning algorithm based
on an online state aggregation scheme that progressively
adjusts the aggregate states, as well as their number, with
respect to a performance-complexity trade-off measured in
terms of maximum entropy. The proposed algorithm con-
stitutes a two-timescale stochastic approximation algorithm
with: (a) a fast component that executes a Q-learning algo-
rithm, and (b) a slow component, based on an online deter-
ministic annealing algorithm, a prototype-based unsupervised
learning algorithm that shows robustness with respect to the

initial conditions, requires minimal hyper-parameter tuning,
and offers online control over the performance-complexity
trade-off, by generating a progressively increasing number
of codevectors. The resulting piece-wise Q-function approx-
imation can be extended with the use of sparse Gaussian
processes defined on the progressively growing set of the
generated codevectors. This approach can provide a smooth
and progressively more accurate Q-function approximation
and a means to estimate the uncertainty of the model in a
given region of the state-action space.

REFERENCES

[1] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “A general
reinforcement learning algorithm that masters chess, shogi, and go
through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[2] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[3] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
learning with function approximation,” IEEE Transactions on Auto-
matic Control, vol. 42, no. 5, pp. 674–690, 1997.

[4] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-
learning with model-based acceleration,” in International Conference
on Machine Learning. PMLR, 2016, pp. 2829–2838.

[5] C. Dann, G. Neumann, J. Peters, et al., “Policy evaluation with
temporal differences: A survey and comparison,” Journal of Machine
Learning Research, vol. 15, pp. 809–883, 2014.

[6] J. Baras and V. Borkar, “A learning algorithm for markov decision
processes with adaptive state aggregation,” in Proceedings of the 39th
IEEE Conference on Decision and Control (Cat. No. 00CH37187),
vol. 4. IEEE, 2000, pp. 3351–3356.

[7] A. George, W. B. Powell, and S. R. Kulkarni, “Value function
approximation using multiple aggregation for multiattribute resource
management,” Journal of Machine Learning Research, 2008.

[8] C. N. Mavridis and J. S. Baras, “Vector quantization for adaptive
state aggregation in reinforcement learning,” in 2021 American Control
Conference (ACC). IEEE, 2021.

[9] C. Mavridis and J. Baras, “Online deterministic annealing for classi-
fication and clustering,” 2021.

[10] C. N. Mavridis and J. S. Baras, “Progressive graph partitioning based
on information diffusion,” in Conference on Decision and Control
(CDC). IEEE, 2021.

[11] R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine learning, vol. 3, no. 1, pp. 9–44, 1988.

[12] V. S. Borkar, Stochastic approximation: a dynamical systems view-
point. Springer, 2009, vol. 48.

[13] C. N. Mavridis and J. S. Baras, “Convergence of stochastic vector
quantization and learning vector quantization with bregman diver-
gences,” in 21rst IFAC World Congress. IFAC, 2020.

[14] E. T. Jaynes, “Information theory and statistical mechanics,” Physical
review, vol. 106, no. 4, p. 620, 1957.

[15] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering with
bregman divergences,” Journal of machine learning research, 2005.

[16] C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.
[17] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive

elements that can solve difficult learning control problems,” IEEE
transactions on systems, man, and cybernetics, pp. 834–846, 1983.

[18] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Summer school on machine learning. Springer, 2003, pp. 63–71.

[19] C. E. Rasmussen, M. Kuss, et al., “Gaussian processes in reinforce-
ment learning.” in NIPS, vol. 4. Citeseer, 2003, p. 1.

[20] A. Ranganathan, M.-H. Yang, and J. Ho, “Online sparse gaussian
process regression and its applications,” IEEE Transactions on Image
Processing, vol. 20, no. 2, pp. 391–404, 2010.

[21] E. Snelson and Z. Ghahramani, “Sparse gaussian processes using
pseudo-inputs,” Advances in neural information processing systems,
vol. 18, pp. 1257–1264, 2005.

5149

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on May 09,2025 at 16:26:47 UTC from IEEE Xplore. Restrictions apply.

