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Abstract— We propose an online deterministic annealing
algorithm for progressive graph partitioning based on the
spectral information of the underlying graph Laplacian matrix.
Online deterministic annealing is a prototype-based unsuper-
vised learning algorithm that progressively adjusts the number
of prototypes used with respect to a performance-complexity
trade-off. Due to the online nature of the proposed learning
algorithm, the structure of the graph need not be known a
priori. In this regard, we construct a distributed approximation
algorithm to estimate the spectral information of the graph
Laplacian, bypassing the exact computation of its eigenvectors.
By propagating an impulse through the graph via a diffusion
equation, we show that each node can construct a local learning
representation which can be used for spectral clustering. As
a result, the proposed approach is suitable for large graphs,
requires minimal hyper-parameter tuning, and provides online
control over the complexity-accuracy trade-off. We illustrate
the properties and evaluate the performance of the proposed
methodology in graph partition and image segmentation appli-
cations.

I. INTRODUCTION

Analysis of large interconnected systems, such as commu-
nication and power networks, swarms of autonomous agents,
and social networks, has been a topic of increasing interest
for decades [1], [2], [3]. Graph partitioning, in particular,
is considered a problem of both theoretical and practical
importance, as it appears as an integral part of network
analysis in multiple applications, including image processing
[4], analysis of protein sequences [5], and resource allocation
and routing in 5G networks [6].

Networked systems are mathematically described and
studied via graph theoretic methods. Spectral properties of
the Laplacian matrix L associated with such graphs, have
been shown to provide useful information for their analysis
and design [7]. In graph clustering, spectral methods use
the eigenvectors of L as unsupervised learning features for
standard clustering algorithms, such as k-means [8]. This
procedure approximates a global solution to the NP complete
problem of creating a partition that minimizes the ratio of
the inter-connection strength to the size of individual clusters
[9]. However, traditional clustering algorithms, including k-
means, are offline algorithms that require the entire dataset
to be known a priori, while they heavily depend on three
major design parameters: (a) the number of prototypes,
which, defines the complexity of the model, (b) the initial
conditions, that affect the performance of the algorithm, and
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(c) the proximity measure used to quantify the similarity
between two vectors in the data space. As a result, the
development of an online clustering algorithm that avoids
poor local minima while progressively adjusting the number
of clusters used, is of significant interest [10], [11].

At the same time, an online clustering algorithm would
suggest that the structure of the graph need not be known a
priori. This gives rise to the use of distributed algorithms
that estimate the eigenvectors of the graph Laplacian L,
which would typically require the eigendecomposition of L,
which in case of large graphs is computationally expensive,
and assumes that the graph Laplacian is readily available a
priori. Numerous distributed algorithms have been proposed
for the estimation of the eigenvectors of L [12], [13], [14].
In [12] the nodes of the graph perform a local iterative
projection algorithm to estimate the eigenvectors of L, during
which, however, the nodes are required to communicate (via
a random walk algorithm) and reach a consensus multiple
times. In [13] and [14] on the other hand, a discretized
wave equation is used to propagate a test signal, while
frequency-based Fourier methods are used to analyze the
response of the nodes and approximate the eigenvalues of
the graph Laplacian L. While this is a more direct and fast
approach towards the computation of the spectral properties
of a graph, the solution of the wave equation does not reach a
consensus, which can greatly limit the network’s bandwidth.
More importantly, the solution approximation depends on
finding peak values of the discrete Fourier transform, which,
by itself, is an unstable process, and requires observations
over a large time window, especially for low frequencies
which is desired.

In this work, we develop an online deterministic anneal-
ing algorithm for spectral clustering. Online deterministic
annealing is a prototype-based clustering algorithm that, due
to its annealing nature, is robust with respect to the initial
conditions, while progressively increasing the number of
prototypes used, with respect to a performance-complexity
trade-off. Moreover, it makes use of dissimilarity measures
that belong to the family of Bregman divergences [15],
[10], which can greatly improve the performance of learning
algorithms [16]. In order to perform spectral clustering,
we adopt a direct approach to approximate the spectral
information of the graph in a distributed fashion, similar
to the one in [13]. A low-bandwidth signal is propagated
through the graph via a diffusion equation, while the local
node responses are used to construct a useful representa-
tion of the spectral information of L, thus bypassing the
exact computation of the eigenvectors. Similar to traditional
spectral clustering [9], the locally computed representations
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are used as unsupervised learning features for the online
deterministic annealing algorithm, which acquires observa-
tions online, by direct communication with the nodes, one
at a time, in order to progressively build a graph partition
that approximately solves the minimal ratio graph clustering
problem. As a result, the proposed approach is suitable for
large graphs, requires minimal hyper-parameter tuning, and
offers online control over the complexity-accuracy trade-off.
We illustrate the properties and evaluate the performance of
the proposed methodology in graph partition and spectral
clustering applications.

II. DISTRIBUTED SPECTRAL FEATURE EXTRACTION

In this section we briefly review some of the main con-
cepts of graph theory, and introduce a distributed algorithm
to compute learning representations based on the spectral
information of the graph Laplacian.

A. Graph Theory and Notation

Let G = (V,E) be an undirected graph with vertex set V
of cardinality |V | = N , and edge set E ⊆ V × V . Without
loss of generality we assume that V = {1, . . . , N}. In
general, G is assumed weighted, with the weights Wij ≥ 0,
associated with each edge (i, j) ∈ E, forming the weighted
adjacency matrix W of dimension N ×N . The weights Wij

represent the connection strength with the understanding that
Wij = 0 if and only if (i, j) /∈ E. We define the random-
walk normalized Laplacian matrix L by:

Lij =


1, if i = j

−Wij/
∑N
k=1Wij, if (i, j) ∈ E

0, otherwise
(1)

which is equivalent to L = I − D−1W where D is the
diagonal degree matrix with the row sums of W . The
normalized graph Laplacian L is strongly connected to the
Laplacian operator ∇2 found in the parabolic heat PDEs and
to the evolution of random walks on the graph [9].

Given the Laplacian matrix L, spectral clustering methods
partition the graph G with respect to the elements of the
eigenvectors

{
v(i)
}N
i=1

of L. Assuming that the eigenvalues
{λi}Ni=1 of L are ordered such that λ1 ≤ λ2 ≤ . . . ≤ λN ,
it is easy to show that λ1 = 0 and v(1) = 1. Moreover,
it is well known that the multiplicity of λ1 is equal to the
number of connected components in the graph [9], and that
0 ≤ λj ≤ 2, ∀j ∈ {1, . . . , N}, which is a direct consequence
of the Gershgorin’s theorem. In the following, we assume
that λ1 < λ2, i.e. that G does not have disconnected clusters.
This is not a restrictive assumption, as will be shown in
Section IV. We also we assume that there exist unique cuts
that divide the graph into K clusters, i.e. that there exist K
distinct eigenvalues close to zero, albeit for unknown K.

B. Distributed Spectral Feature Extraction via Information
Diffusion

The cluster that each node (i) belongs to is decided by
the values

{
v
(m)
i

}
m∈M

, where M ⊆ {2, . . . , N}, while

the second eigenvector v(2), called the Feidler vector, is
believed to provide most of the information needed [7].
If the matrix L is known a priori and is relatively small,
one can compute the eigenvectors

{
v(i)
}N
i=1

offline by stan-
dard matrix decomposition algorithms, and feed the values{
v
(m)
i

}
m∈M

to a clustering algorithm, e.g. k-means [8].
Distributed methods have also been proposed such that each
node (i) can locally compute the corresponding elements
of the eigenvectors

{
v
(m)
i

}
m∈M

. These methods typically
include consensus algorithms or some other information-
sharing mechanisms [12], [13], [14].

We simulate the evolution of the heat equation ∂u
∂t = ∇2u

on the graph G, which is given by the discretized equation
[17]:

ui(t+ 1) = ui(t)−
∑
j∈N(i)

Lijuj(t), i, j ∈ V (2)

where t ≥ 0 and N(i) = {j : Wij 6= 0} is the set of
the neighbors of node (i). The scalar values ui form the
signal u := [u0, . . . , uN ]T which is initialized such that
uk(0) = 1 for some k ∈ {1, . . . , N} and uj(0) = 0 for
j 6= k. Therefore, the above iteration requires only local
communication with the neighbors of each node (i), while
only a single scalar value is being broadcasted.

Equation (2) forms a discrete dynamical system which can
be written in matrix form as:

u(t+ 1) = (I− L)u(t) (3)

The solution of the heat equation (3) can be expanded in
terms of the eigenvalues and eigenvectors of the matrix (I−
L) which are closely related to those of matrix L. In fact,
it is easy to see that the eigenvalues of (I − L) are given
by {(1− λi)}Ni=1 and the eigenvectors of (I − L) and L
coincide. Therefore, the solution u(t) of (3) is given by

u(t) = c1(1− λ1)tv(1) + . . .+ cN (1− λN )tv(N) (4)

where the constants ci, i ∈ {1, . . . , N}, depend on the initial
condition u(0) and the eigenvectors of the graph Laplacian
L, and are given by ci = u(0)Tṽ(i), where ṽ(i) represents
the i-th row of the matrix V −1 with V being the matrix with
columns corresponding to the eigenvectors

{
v(i)
}N
i=1

. Since
ci are constants, the products v̂(i) := civ

(i), i = 1, . . . , N ,
are also eigenvectors of both (I − L) and L. Therefore, (4)
can be written as:

u(t) = (1− λ1)tv̂(1) + . . .+ (1− λN )tv̂(N) (5)

and a similar equation holds locally for every node (i):

ui(t) = c1 + (1− λ2)tv̂
(2)
i + . . .+ (1− λN )tv̂

(N)
i (6)

since (1− λ1) = 1 and v(1)i = 1, ∀i = 1 . . . , N . Therefore,
since every node (i) can keep track of its own response ui(t)
for t ≥ 0, a non-linear system of equations can be solved to
reconstruct the 2N−2 unknowns λj , v

(j)
i = 1, j = 2, . . . , N .

However, such an approach would not be robust for two
main reasons. First, the solution is not unique. Secondly, the
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values of λj , j = 2, . . . , N , need to be the same in all N
solutions that are locally computed, a constraint that cannot
be imposed without further communication between the
nodes. To counteract that, we observe that the information to
reconstruct the eigenvectors

{
v(i)
}N
i=1

lies within the vector
of observations {ui(t)}Nct=0, and that, for spectral clustering,
it may be possible to bypass the exact computation of the
eigenvectors

{
v(i)
}N
i=1

, and use {ui(t)}Nct=0 directly. Here we
have used Nc ≥ 2N − 2 to represent the point of practical
convergence to the consensus value u∞i = c1, ∀i ∈
{1, . . . , N} Recall that for i = 2, . . . , N , 0 < λi ≤ 2, and,
making the reasonable assumption that the equality does not
hold, i.e. that λN < 2, we get that |(1 − λi)| < 1, for
i = 2, . . . , N . Therefore, from (6) and the geometric series
convergence, we get:

∞∑
t=0

ui(t)− u∞i =

N∑
j=2

1

λj
v̂
(j)
i (7)

which is a linear combination of the eigenvectors of the graph
Laplacian L, in which, notably, more weight is given to the
first eigenvectors, since 0 < λ2 ≤ . . . ≤ λN < 2. Moreover,
the infinite sum

∑∞
t=0 ui(t)− u∞i can be approximated by

x̂i :=

Nc∑
t=0

ui(t)− ui(Nc) (8)

where Nc is the time that each node observes practical
convergence. Therefore the one-dimensional value x̂i that
is locally computed by each node (i), for all i = 1, . . . , N ,
can be used as a learning feature for spectral clustering.

We note that clustering with respect to x̂i, similar
to the spectral clustering which is done with respect to{
v
(m)
i

}
m∈M

, is a heuristic approach to approximate a so-
lution to the graph cut problem that minimizes the ratio of
the inter-connection strength to the size of individual clusters
[9]. As a final note, since the time responses of the nodes
are being used as learning features, further feature extraction
can be applied using time-frequency analysis to reveal hidden
patterns that may help in the clustering process. However, to
our knowledge, there are currently no results that can connect
the choice of these learning features with the resulting graph
cuts. This is a similar problem to that of choosing the number
M of the eigenvectors to be used in spectral clustering, and
is typically answered experimentally.

III. PROGRESSIVE CLUSTERING WITH ONLINE
DETERMINISTIC ANNEALING

In this section, we introduce the online deterministic
annealing algorithm for progressive graph partitioning using
either the eigenvectors of the graph Laplacian

{
v
(m)
i

}
m∈M

,
or the spectral features x̂i as defined above. A detailed review
of the mathematics and the implementation of the algorithm
can be found in [10] and the references therein.

A. Towards the Deterministic Annealing Approach

Unsupervised analysis can provide valuable insights into
the nature of a data space. In particular, vector quantization
[18] can reduce storage needs, reveal structures, such as
clusters in the data, or pre-process large datasets for further
analysis, through the representation of the data space by a set
of prototypes. Given a random variable X : Ω→ S defined
in the probability space (Ω,F,P), a quantizer Q : S → S
is defined such that Q(X) =

∑K
h=1 µh1[X∈Sh], where

V := {Sh}Kh=1 forms a partition of S and M := {µh}Kh=1

represents a set of codevectors such that µh ∈ ri(Sh), h ∈
{1, . . . ,K}. Given a dissimilarity measure d : S × ri(S)→
[0,∞) one seeks the optimal M,V in terms of minimum
average distortion:

min
M,V

D(Q) := E [d (X,Q(X))]

Vector quantization algorithms assume that Q is a de-
terministic function of X and are proven to converge to
locally optimal configurations even when formulated as
online learning algorithms [18]. However, their convergence
properties and final configuration depend heavily on two
design parameters: (a) the number of clusters (neurons), and
(b) their initial configuration. To deal with this phenomenon,
we adopt concepts from annealing optimization methods,
motivated by annealing processes in physical chemistry.

A particularly interesting approach is the Deterministic
Annealing approach [19], which makes use of a probabilistic
framework, where input vectors are assigned to clusters
in probability, thus dropping the assumption that Q is a
deterministic function of X . For the randomized partition,
the expected distortion becomes:

D = E [dφ(X,Q)] = E [E [dφ(X,Q)|X]]

The central idea of deterministic annealing is to seek the
distribution that minimizes D subject to a specified level of
randomness, measured by the Shannon entropy

H(X,M) = H(X)− E [E [log p(M |X)|X]]

with p(µ|x) representing the association probability relating
the input vector x with the codevector µ. This is essentially
a realization of the Jaynes’s maximum entropy principle [20]
which states: of all the probability distributions that satisfy a
given set of constraints, choose the one that maximizes the
entropy. The resulting multi-objective optimization is conve-
niently formulated as the minimization of the Lagrangian

F = D − TH (9)

where T is the temperature parameter that acts as a Lagrange
multiplier. Clearly, (9) represents the scalarization method
for trade-off analysis between two performance metrics. For
large values of T we maximize the entropy, and, as T is
lowered, we essentially transition from one Pareto point to
another in a naturally occurring direction that resembles an
annealing process. In this regard, the entropy H , which is
closely related to the “purity” of the clusters, acts as a
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regularization term which is given progressively less weight
as T decreases.

As is the case in vector quantization, we minimize F
via a coordinate block optimization algorithm. Minimizing
F with respect to the association probabilities p(µ|x) is
straightforward and yields the Gibbs distribution

p(µ|x) =
e−

d(x,µ)
T∑

µ e
− d(x,µ)T

(10)

while, in order to minimize F with respect to the codevector
locations µ we set the gradients to zero

d

dµ
D = 0 =⇒ d

dµ
E [E [d(X,µ)|X]] = 0 (11)

This optimization procedure takes place for decreasing
values of the temperature coefficient T such that the solution
maintains minimum free energy (thermal equilibrium) while
gradually lowering the temperature. Adding to the physical
analogy, it is significant that, as the temperature is lowered,
the system undergoes a sequence of “phase transitions”,
which consists of natural cluster splits where the cardi-
nality of the codebook (number of prototypes) increases.
This is a bifurcation phenomenon that provides a useful
tool for controlling the size of the model relating it to
the scale of the solution. At very high temperature (T →
∞) the optimization yields uniform association probabilities
p(µ|x) = 1/K, and, all the codevectors are located at the
same point. As we lower the temperature, the cardinality
of the codebook changes. The bifurcation can be traced by
generating a perturbed pair of codevectors for each effective
cluster, which, after convergence, can either merge together
or get separated, depending on whether a phase transition
has occurred [10].

B. Bregman Divergences as Dissimilarity Measures

The proximity measure d need not be a metric, and can be
generalized to more general dissimilarity measures inspired
by information theory and statistical analysis. In particular,
Bregman divergences can offer numerous advantages in
learning applications compared to the Euclidean distance
alone [15]. Examples of Bregman divergences include the
squared Euclidean distance, and the Kullback-Leibler di-
vergence, and formally, they are defined by dφ (x, µ) =
φ (x)−φ (µ)− ∂φ

∂µ (µ) (x− µ), where φ : S → R is a strictly
convex twice F-differentiable function on a vector space
S ⊆ Rd, and x, µ ∈ S. Notably, in the case of deterministic
annealing Bregman divergences play an even more important
role, since we can show that, if d is a Bregman divergence,
the solution to the second optimization step (11) can be
analytically computed in a convenient centroid form:

Theorem 1 ([10]): Assuming the conditional probabilities
p(µ|x) are constant, the Langragian F in (9) is minimized
with respect to the codevector locations µ by

µ∗ = E [X|µ] (12)

if d := dφ is a Bregman divergence for an appropriately
defined function φ.

C. The online learning rule

The deterministic annealing algorithm is an offline algo-
rithm, since the approximation of the conditional expectation
E [X|µ] is computed by the sample mean of the data points
weighted by their association probabilities p(µ|x). To define
an online training rule for the deterministic annealing frame-
work, we formulate a stochastic approximation algorithm to
recursively estimate E [X|µ] directly.

Theorem 2 ([10]): Let S be a vector space, µ ∈ S, and
X : Ω → S be a random variable defined in a probability
space (Ω,F,P). Let {xn} be a sequence of independent
realizations of X , and {α(n) > 0} a sequence of stepsizes
such that

∑
n α(n) = ∞, and

∑
n α

2(n) < ∞. Then the
random variable mn = σn/ρn, where (ρn, σn) are sequences
defined by

ρn+1 = ρn + α(n) [p(µ|xn)− ρn]

σn+1 = σn + α(n) [xnp(µ|xn)− σn] ,
(13)

converges to E [X|µ] almost surely, i.e. mn
a.s.−−→ E [X|µ].

As a direct consequence of this theorem, the following
corollary provides an online learning rule that solves the op-
timization problem of the deterministic annealing algorithm.

Corollary 2.1 ([10]): The online training rule{
ρi(n+ 1) = ρi(n) + β(n) [p̂(µi|xn)− ρi(n)]

σi(n+ 1) = σi(n) + β(n) [xnp̂(µi|xn)− σi(n)]
(14)

where
∑
n β(n) = ∞,

∑
n β

2(n) < ∞, and the quantities
p̂(µi|xn) and µi(n) are recursively updated as follows:

µi(n) =
σi(n)

ρi(n)
, p̂(µi|xn) =

ρi(n)e−
d(xn,µi(n))

T∑
i ρi(n)e−

d(xn,µi(n))

T

(15)

converges almost surely to a solution of the block optimiza-
tion (10), (12).

The learning rule (14), (15) is a stochastic approximation
algorithm [21] which can be used for progressive graph
partitioning in the vector space defined by the span of the
eigenvectors

{
v
(m)
i

}
m∈M

of L, or the spectral features x̂i as
defined in Section II. Notably, the size of {µi}i progressively
increases with respect to a trade-off between accuracy and
complexity. At every temperature level T , perturbations of
the existing codevectors are introduced, which, after conver-
gence (i.e. dφ(µin, µ

i
n−1) < εc, ∀i, for some εc > 0), will

merge back together (i.e. dφ(µj , µi) < εn, ∀i, j, i 6= j, for
some εn > 0) or get separated, signifying bifurcation. At the
same time, idle codevectors can also be detected, since, as a
natural consequence of the stochastic approximation learning
rule, the approximated probability p(µi) becomes negligible
(i.e. p(µi) < εr, for some εr > 0) if µi is largely dissimilar
to the majority of the observed data points.

In terms of hyper-parameters, the temperature schedule
T , the stepsizes αn, and the constants εc, εn, εr, δ used
to determine practical convergence, are all parameters that
may affect the behavior of the algorithm. In particular,
the temperature schedule and the parameter εn which is
used to determine if two codevectors are similar enough
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to be merged, play an important role in the complexity-
accuracy trade-off of the algorithm. The complete Algorithm
1 is shown bellow, and parameter selection is discussed
thoroughly in [10].

Algorithm 1 Online Deterministic Annealing [10]

Set dφ, Tmax, Tmin, γ, Kmax, {αn}, εp, εc, εn, εr, δ
Initialize

{
µi
}

, K = 1, T = Tmax, p(µi) = 1,
σ(µi) = µip(µi), ∀i

while K < Kmax and T > Tmin do
Perturb µi ←

{
µi + δ, µi − δ

}
, ∀i

Increment K ← 2K
Update p(µi), σ(µi)← µip(µi), ∀i
Set n← 0
repeat

Observe data point x
for i = 1, . . . ,K do

Update:

p(µi|x)← p(µi)e−
dφ(x,µi)

T∑
i p(µ

i)e−
dφ(x,µi)

T

p(µi)← p(µi) + αn
[
p(µi|x)− p(µi)

]
σ(µi)← σ(µi) + αn

[
xp(µi|x)− σ(µi)

]
µi ← σ(µi)

p(µi)
Increment n← n+ 1

end for
until dφ(µin, µ

i
n−1) < εc, ∀i

Keep effective codevectors:
discard µi if dφ(µj , µi) < εn, ∀i, j, i 6= j

Remove idle codevectors:
discard µi if p(µi) < εr, ∀i

Update K, p(µi), σ(µi), ∀i
Lower temperature T ← γT

end while

IV. EXPERIMENTS

We illustrate the properties and evaluate the performance
of the proposed methodology in graph partition and image
segmentation applications.

A. Graph Clustering

We showcase how the proposed methodology works, by
presenting, in Fig. 1, the output of the proposed graph
clustering algorithm in three toy graph examples. Unless
stated otherwise, the results presented will correspond to the
progressive clustering algorithm Alg. 1 using the spectral
features {x̂i}i of (8), calculated locally by each node via the
distributed computation algorithm detailed in Section II.

In Fig. 1, the number of clusters K increases from left
to right, as the temperature coefficient T decreases. The
rightmost partitions are shown only for illustration purposes.
They correspond to very low values of T and, under a
reasonable choice of Tmin, Alg. 1 would have stopped before
reaching this configuration. Notably, the partitions shown in
Fig. 1 are identical to those produced by spectral clustering

[9], and by the k-means algorithm trained on the features
{x̂i}i of (8).

(a) Simple graph (13 nodes).

(b) Concentric circles (250 nodes, 25-nn).

(c) Half moons (250 nodes, 25-nn).

Fig. 1: Toy examples of graph clustering using the proposed
methodology: (8) and Alg. 1. The number of clusters K
increases as temperature T decreases from left to right. The
rightmost partition corresponds to very low values of T and is
typically discarded. The results align with those of traditional
spectral clustering.

In a more interesting example, we use the proposed
methodology to partition a community graph from the bench-
mark introduced in [22]. The results are shown in Fig.
2. Once again, the partitions shown in Fig. 2 are almost
identical to those produced by spectral clustering [9], and
seem to be a little better. For reference, the results are
identical if we use the k-means algorithm trained on the
features {x̂i}i of (8) for k = 3. However, in k-means,
there is no way to know a priori the number of clusters
K, especially if the graph is not known and the spectral
features are computed in a distributed manner. In contrast,
Alg. 1 automatically decides the number K, by progressively
adjusting to the observations.

(a) Alg. 1. K = 1, T = 49.0. (b) Alg. 1. K = 2, T = 11.0.

(c) Alg. 1. K = 3, T = 0.1.
(d) Spectral Clustering for K =
3 [9].

Fig. 2: Example of community graph partitioning [22]. Here
250 nodes form 3 communities.
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B. Image Segmentation

A common application of spectral clustering is image
segmentation. In Fig. 3, we present a simple multi-class
image segmentation task. The picture has been converted
to a graph with each pixel assumed adjacent to all pixels
that are less than n = 3 pixels away in any direction, with
a weight Wij depending on the similarity of the intensity
of the image. Despite the simplicity of the image, spectral
clustering fails to infer the underlying structure. The use of
the proposed features (8) with k-means seems to outperform
spectral clustering, as does Alg. 1, which progressively infers
the number of clusters.

(a) Alg. 1. K = 2. (b) Alg. 1. K = 3. (c) Alg. 1. K = 4.

(d) Alg. 1. K = 5.
(e) Spectral Cluster-
ing for K = 4.

(f) k-means with x̂i

for K = 4.

Fig. 3: Simple multi-class image segmentation.

Lastly, in Fig. 4, we experiment with a real image from the
Berkeley Segmentation Dataset [23]. The image depicts an
airplane flying on the sky. After downsampling the image to
a resolution of 64×96, in order to reduce the computational
time, we convert it to a graph in a similar way. Alg.
1 successfully detects the airplane for K = 2, and its
boundaries for K = 3.

(a) Original image. (b) Alg. 1. K = 2.

(c) Alg. 1. K = 3. (d) Spectral Clustering, K = 2.

Fig. 4: Image segmentation [23].

V. CONCLUSION

We proposed a progressive graph partitioning algorithm
based on a distributed approximation of the spectral infor-

mation of the underlying graph Laplacian matrix and a novel
online deterministic annealing algorithm. The experimental
results suggest that the proposed approach can be effectively
used for progressive partitioning of large graphs and image
segmentation applications.
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