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Abstract— We propose an adaptive state aggregation scheme
to be used along with temporal-difference reinforcement learn-
ing and value function approximation algorithms. The resulting
algorithm constitutes a two-timescale stochastic approximation
algorithm with: (a) a fast component that executes a temporal-
difference reinforcement learning algorithm, and (b) a slow
component, based on online vector quantization, that adaptively
partitions the state space of a Markov Decision Process accord-
ing to an appropriately defined dissimilarity measure. We study
the convergence of the proposed methodology using Bregman
Divergences as dissimilarity measures that can increase the
efficiency and reduce the computational complexity of vector
quantization algorithms. Finally, we quantify its performance
on the Cart-pole (inverted pendulum) optimal control problem
using Q-learning with adaptive state aggregation based on the
Self-Organizing Map (SOM) algorithm.

I. INTRODUCTION

Reinforcement learning and value function approximation
algorithms have been receiving increasing attention recently
and have resulted in impressive applications in multiple
fields including elevator control, robot soccer [1], and game-
playing, such as Backgammon, Chess and Go [2], [3].

Temporal-difference learning methods dominate current
reinforcement learning algorithms due to their data effi-
ciency. When applied to a Markov Decision Process (MDP)
with finite state and action space, function approximation
using lookup tables has been well established [4], [5]. Due
to the exponential increase of states with respect to the di-
mensionality of the state space, however, parametric models
have been widely studied for function approximation, and in
particular linear combinations of fixed basis functions, such
as artificial neural networks [6], [7]. While RL algorithms
based on parametric models can deal remarkably well with
the dimensionality issues, convergence properties can be
difficult to establish, especially in the nonlinear case or in off-
policy scenarios [5], [8], and their performance in practice
heavily depends on the choice of the basis functions [9]. On
the other hand, lookup tables can hardly be used in MDPs
with large state spaces. For this reason, state aggregation
has been proposed as a quantization scheme for large or
infinite spaces, and can be viewed as a special case of linear
models with the basis functions being indicator functions of
a partition of the state space [7]. Although this simplicity of
the feature space is often desirable, most state aggregation
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schemes are typically fixed and ad-hoc, and, as a result,
constitute a sub-optimal representation of the state space.

Related Work. State aggregation has shown promising
results and has been widely studied in Value Function Ap-
proximation (VFA) settings. George et al. in [10] propose an
ad-hoc state aggregation scheme in multiple resolutions and
use a linear combination of the estimates in each resolution in
a VFA algorithm. Fernández et al. in [11] use a generalized
Lloyd vector quantization algorithm to discretize the state
space before running a Q-learning algorithm. Singh et al. in
[12] use a heuristic adaptive state aggregation scheme based
on soft clustering, and Lee et al. in [13] propose an adaptive
state space partitioning based on vector quantization. In
both cases, the methods are assessed experimentally and no
formal analysis is given. Bertsekas and Castanon in [14]
use an adaptive aggregation method which is applicable to
offline infinite horizon dynamic programming, and Baras
and Borkar in [15], first propose the use of learning vector
quantization in conjunction with a policy iteration algorithm
which result in a multiple-timescale stochastic approximation
algorithm. Finally, Sehad et al. in [16] and Montazeri et al.
in [17] make use of variants of the Self-Organizing Map
algorithm ([18]) to solve reinforcement learning problems
with continuous state spaces.

Contribution. In this work, we consider an MDP with
infinite state space and propose a state aggregation al-
gorithm that adaptively groups together states, according
to an appropriately defined dissimilarity measure, as they
are being observed by a temporal-difference reinforcement
learning algorithm. We use online Vector Quantization (VQ),
which can be viewed as a stochastic approximation algorithm
[19], and form a two-timescale stochastic approximation
algorithm [20] with: (a) a fast component corresponding to
the temporal-difference learning algorithm, and (b) a slow
component corresponding to the adaptive state aggregation
scheme. Intuitively, the resulting algorithm approximates the
value function with a linear combination of indicator func-
tions of dynamically changing partitions of the state space.
We make use of Bregman divergences [21] as dissimilarity
measures that can increase the efficiency and reduce the
complexity of VQ algorithms, and study the convergence
properties of the proposed algorithm based on existing results
in VFA [7] and stochastic approximation [22]. Finally, we
quantify the performance of the proposed methodology on
the inverted pendulum (Cart-pole [23]) optimal control prob-
lem using Q-learning with adaptive state aggregation based
on the Self-Organizing Map (SOM) algorithm [18], a VQ
variant with lattice topology [24].
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II. MATHEMATICAL BACKGROUND AND NOTATION

A. Reinforcement Learning
We consider a discrete-time MDP (X,U,P, C) with:
• X being the state space,
• U being the action (control) space,
• P : (x, u, x′) 7→ P [x′|x, u] being the transition prob-

abilities associated with a stochastic state transition
function f : (x, u) 7→ x′, and

• C : X × U → R+, being the immediate cost function,
assumed deterministic.

Reinforcement Learning (RL) examines the problem of
learning a control policy u := (u0, u1, . . .) that solves the
discounted infinite-horizon optimal control problem

min
u

E

[ ∞∑
l=0

γlC(xl, ul)

]
where γ ∈ (0, 1].

We define the value function V u of a policy u as

V u(xk) : = E

[ ∞∑
l=k

γl−kC(xl, ul)

]
= C(xk, uk) + γE [V u(xk+1) | xk]

= Qu(xk, uk)

where Qu represents the quality function of a policy u,
i.e. the expected return for taking action uk at time k and
state xk, and thereafter following policy u. As a result of
Bellman’s principle, we get the (discrete-time) Hamilton-
Jacobi-Bellman (HJB) equation

V ∗(xk) : = min
u

E

[ ∞∑
l=k

γl−kC(xl, ul)

]
(HJB)

= min
u
{ C(xk, uk) + γE [V ∗(xk+1) | xk] }

= min
uk

Q∗(xk, uk)

(1)
where V ∗ := V u

∗
and Q∗ := Qu

∗
represent the optimal

value and Q functions, respectively.
Reinforcement learning algorithms consist mainly of

temporal-difference learning algorithms [25] that try to
approximate a solution to (1) using iterative optimization
methods. The optimization is performed over a finite set
of parameters which are used to describe the value (or
Q) function. These parameters typically correspond to a
parametric model (e.g. a neural network) used for function
approximation, or to the different values of the vector V (X)
(or Q(X,U)), in which case X and U are assumed finite
either by definition or as a result of discretization.

In this work we will assume that the state space is a
finite-dimensional vector space that has been appropriately
discretized in a finite set. When X and U are finite, a widely
used approach is the Q−learning algorithm (Alg. 1), which is
a stochastic approximation algorithm [26] that asymptotically
minimizes the Mean-Squared Bellman Error

min
q

E
[
‖C(x, u) + min

u
{ γQ(x′, u) } − q‖2 | x

]
.

Q−learning depends on a stochastic exploration policy πL =
u′ which decides the next action given the observed state.
Given the policy πL, the original MDP becomes a Markov
Chain, and the Q−learning algorithm becomes an off-policy
TD(0) algorithm [5] for Value Function Approximation
(VFA):

V πLj+1(x) = V πLj (x)

+ αj
[
C(x, πL(x)) + γV πGj (x′)− V πLj (x)

]
where πG(x) ∈ arg minu {V u(f(x, u))} (in the case of the
on-policy counterpart of Q-learning, i.e. SARSA, we have
πG = πL).

It is apparent that temporal-difference reinforcement learn-
ing and value function approximation are closely related,
with the latter often being studied independently and used
for policy evaluation [9]. For this reason, we will describe
the proposed methodology in the general setting of temporal-
difference value function approximation and test its perfor-
mance using Q−learning.

Algorithm 1 Q−learning
Initialize Q0(x, u), ∀x ∈ X, u ∈ U

repeat
Choose u′ = πL(x) . πL: exploration policy
Observe x′ = f(x, u′) . f : state transition function
Update Q−function:

Qj+1(x, u′) = Qj(x, u
′) + αj [C(x, u′)

+ γmin
u
Qj(x

′, u)−Qj(x, u′)]

until Convergence criterion is satisfied
Update Policy:

uε(x) = arg min
u

{ Qε(x, u) }

B. Vector Quantization

In this section, we introduce the online Vector Quanti-
zation (VQ) algorithm to solve the unsupervised problem
of prototype-based clustering using a dissimilarity measure,
which can be stated as an optimization problem:

Problem 1: Let X : Ω→ S be a random variable defined
in the probability space (Ω,F,P), and d : S × ri(S) →
[0,∞) be a divergence measure. Let V := {Sh}kh=1 be a
partition of S with respect to d and M := {µh}kh=1, such
that µh ∈ ri(Sh), h ∈ K, K := {1, . . . , k}. A quantizer
Q : S → S is defined such that Q(X) =

∑k
h=1 µh1[X∈Sh]

and the problem is formulated as

min
M,V

J(Q) := E [d (X,Q(X))]

Assuming M is a deterministic function of X , Problem 1
becomes equivalent with

min
{µh}kh=1

k∑
h=1

EX
[
d (X,µh)1[X∈Sh]

]
(2)
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for V being a Voronoi partition, i.e. for

Sh =

{
X ∈ S : h = arg min

τ=1,...,k
d(X,µτ )

}
, h ∈ K (3)

It is typically the case that the actual distribution of
X ∈ S is unknown, and a set of independent realizations
{Xi}ni=1 := {X(ωi)}ni=1, for ωi ∈ Ω, are available. In case
the observations {Xi}ni=1 are available a priori, the solution
of the VQ problem is traditionally approached with variants
of the LBG algorithm [27], which is essentially a block
optimization algorithm that solves (2) and (3) iteratively,
until convergence.

When the observed data are not available a priori but are
being acquired online, a stochastic (online) VQ algorithm
(sVQ) can be defined as a recursive algorithm:

Definition 1 (Stochastic Vector Quantization Algorithm):
µt+1
h = µth − α(v(h, t))1[Xt+1∈S

t+1
h ]∇µhd

(
Xt+1, µ

t
h

)
St+1
h =

{
X ∈ S : h = arg min

τ=1,...,k
d(X,µtτ )

}
, h ∈ K

(4)

for every t ≥ 0, where µ0
h is given during initialization, and

v(h, t) represents the number of times the component µh has
been updated up until time t.

It can be shown ([19]) that algorithm (5) is an asyn-
chronous stochastic approximation algorithm of the form:

µt+1 = µt + α(t)
[
θt(µ) +M t+1

]
(5)

where θth(µ) = EX [Θh(µt, Xt+1)] a.s., Θh(µ,X) =(
−1[X∈Sh]

)
∇µhd (X,µh), and M t

h is the martingale differ-
ence M t+1

h := Θh(µt, Xt+1) − θth(µ). Therefore, invoking
Theorem 2 and Corollary 2.1 of [19], we can show that the
stochastic vector quantization algorithm (5) converges to an
invariant set of the O.D.E.

µ̇ = θ(µ) = −∇µJ(µ)

where J(µ) = EX [d (X,Q(X))].

C. Bregman Divergences as Dissimilarity Measures

As shown above, vector quantization algorithms depend
on a dissimilarity measure. In most cases this is assumed to
be a convex metric, and in particular the Euclidean distance,
making the VQ algorithms applicable only to metric spaces.
However, this measure can be generalized to dissimilarity
measures inspired by information theory and statistical anal-
ysis, such as the Bregman divergence:

Definition 2 (Bregman Divergence): Let φ : H → R, be
a strictly convex function defined on a normed vector space
dom(φ) = H such that φ is twice F-differentiable on H .
The Bregman divergence dφ : H × H → [0,∞) is defined
as:

dφ (x, µ) = φ (x)− φ (µ)− ∂φ

∂µ
(µ) (x− µ) ,

where x, µ ∈ H , and the continuous linear map ∂φ
∂µ (µ) :

H → R is the Fréchet derivative of φ at µ.

In this work, we will concentrate on nonempty, compact
convex sets S ⊆ Rd so that the derivative of dφ with respect
to the second argument can be written as

∂dφ
∂µ

(x, µ) =
∂φ(x)

∂µ
− ∂φ(µ)

∂µ
− ∂2φ(µ)

∂µ2
(x− µ) +

∂φ(µ)

∂µ

= −∂
2φ(µ)

∂µ2
(x− µ) = −

〈
∇2φ(µ), (x− µ)

〉
where x, µ ∈ S, ∂

∂µ represents differentiation with respect
to the second argument of dφ, and ∇2φ(µ) represents the
Hessian matrix of φ at µ.

Example 1: As a first example, φ(x) = 〈x, x〉 , x ∈ Rd,
gives the squared Euclidean distance

dφ(x, µ) = ‖x− µ‖2

for which ∂dφ
∂µ (x, µ) = −2(x− µ).

Example 2: A second interesting Bregman divergence that
shows the connection to information theory, is the general-
ized I-divergence which results from φ(x) = 〈x, log x〉 , x ∈
Rd++ such that

dφ(x, y) = 〈x, log x− logµ〉 − 〈1, x− µ〉

for which ∂dφ
∂µ (x, µ) = −diag−1(µ)(x − µ), where 1 ∈ Rd

is the vector of ones, and diag−1(µ) ∈ Rd×d++ is the diagonal
matrix with diagonal elements the inverse elements of µ.
It is easy to see that φ(x) reduces to the Kullback-Leibler
divergence if 〈1, x〉 = 1.

A key property of Bregman divergences in vector quan-
tization is that their use in batch algorithms based on the
generalized Lloyd algorithm, is both necessary and sufficient
for local convergence, which follows from the following
theorem proven in [21]:

Theorem 1: Let X : Ω→ S be a random variable defined
in the probability space (Ω,F,P) such that E [X] ∈ ri(S),
and let a distortion measure d : S × ri(S)→ [0,∞), where
ri(S) denotes the relative interior of S. Then µ := E [X] is
the unique minimizer of E [d (X, s)] in ri(S), if and only if
d is a Bregman Divergence for any function φ that satisfies
the definition.

This result allows for the optimizer µh of (2) to be
analytically computed as the sample mean of the data inside
Sh. Moreover, when d := dφ is a Bregman divergence, and
under some mild conditions on the function φ (see [19]),
(5) can be shown to converge to an asymptotically stable
equilibrium point µ∗, for some domain of attraction D∗ that
depends on the initial conditions µ0

h and the sample path Xt,
which, at least locally, minimizes J(µ).

D. Self-Organizing Map

A variant of the sVQ algorithm (4) first introduced by
Kohonen [18], is the Self-Organizing Map (SOM) algorithm.
SOM is a competitive-learning neural network with the
neurons (cluster representatives µ) arranged in a lattice topol-
ogy. This introduces the notion of a neighborhood which is
measured via a neighborhood function and is incorporated
in the training rule. In this work, we adopt a Gaussian
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neighborhood function and define the SOM algorithm as
follows:

Definition 3 (Self-Organizing Map (SOM) Algorithm):µ
t+1
h = µth − αtG(µth, µ

t
h∗ ,Σ(t))∇µ

h
dφ
(
Xt+1, µ

t
h

)
h∗ = arg min

τ=1,...,k
dφ(Xt+1, µ

t
τ ) (6)

where

G(x,m,Σ) =
1√

(2π)k|Σ|
e−

1
2 (x−m)TΣ(x−m)

is a Gaussian neighborhood function with respect to a
predefined lattice topology of µ, and µ0

h is given during
initialization.

In contrast with sVQ, where only the weight vector
closest to each observation is updated, SOM updates all
the representing vectors in a neighborhood of the winner
vector with different weights, depending on the value of the
neighborhood function, centered at the winner neuron. The
neighborhood typically becomes smaller over time, and it has
been shown [24] that, similar to sVQ, SOM can be viewed
as a convergent stochastic approximation algorithm of the
form (5).

III. STATE AGGREGATION WITH VECTOR QUANTIZATION

We consider an MDP (S,U,P, C), where S ⊆ Rd is
a compact convex set. We define a quantizer Q(X) =∑k
h=1 µ(h)1[X∈Sh], where {Sh}kh=1 is a partition of S.

The quantizer Q defines a state aggregation scheme with
k clusters (aggregate states), each represented by µ(h), h =
1, . . . , k. We define the new aggregate state space as X =
{X1, . . . , Xk} and a new MDP (X,U,P′, C ′) on the aggre-
gate states with transition probabilities

P′ [Xk|Xl, u] := P [x′ ∈ Sk|x ∈ Sl, u] ∈ P′ (7)

as argued in [7], [12]. Under a given policy πL, this MDP
reduces to a Markov Chain. We represent the cost-to-go value
function estimates for each aggregate state, given πL, as a
vector V πL := (V πL(1), . . . , V πL(k)) ∈ Rk+. Notice that
V πL(h), h = 1, . . . , k essentially represents the common
cost-to-go value of all the states in the set Sh, which depends
on the value µh. It is natural to seek for a partition Sh, h =
1, . . . , k such that the aggregate states represent the actual
state space S in an optimal way according to some measure.
We address this problem by running an sVQ algorithm along
with a temporal-difference value iteration algorithm in order
to dynamically approximate an optimal partition with respect
to a dissimilarity measure expressed as a Bregman diver-
gence. The resulting value function approximation algorithm
with adaptive state aggregation constitutes a two-timescale
stochastic approximation algorithm:

Definition 4: The value function approximation algorithm
with adaptive state aggregation based on Vector Quantization

reads as:
V πLi+1(h∗) = V πLi (h∗)

+ αi [C(x, πL(x)) + γV πGi (h′)− V πLi (h∗)]

µi+1(h∗) = µi(h
∗)− βi∇µd (x, µi(h

∗))

h∗ = arg min
τ=1,...,k

d(x, µi(τ))

(8)
where x ∈ S is the current state, x′ = f(x, πL(x)) ∈ S
is the next state with f being an unknown stochastic state
transition function, h′ = {h : x′ ∈ Sh}, and V πG(h) =
minu {C(x, u) + γV πL(h)}. The stepsizes αi and βi in (8)
satisfy

∑
i αi =

∑
i, βi = ∞,

∑
i(α

2
i + β2

i ) < ∞, and
βi/αi → 0.

The condition βi/αi → 0 is of great importance. Intu-
itively, the stochastic approximation algorithm (8) consists
of two components running in different timescales. The
slow component µ(·) corresponds to the vector quantization
algorithm and is viewed as quasi-static when analyzing the
behavior of the fast transient V (·) which corresponds to the
value function approximation algorithm. As an example, the
condition βn/αn → 0 is satisfied by stepsizes of the form
(αn, βn) = (1/n, 1/1+n logn), or (αn, βn) = (1/n2/3, 1/n).
Another way of achieving the two-timescale effect is to run
the iterations for the slow component {µn} with stepsizes{
αn(k)

}
, where n(k) is a subsequence of n that becomes

increasingly rare (i.e. n(k+ 1)−n(k)→∞), while keeping
its values constant between these instants. In practice, it
has been observed that a good policy is to run the slow
component with slower stepsize schedule βn and update it
along a subsequence keeping its values constant in between
([22], Ch. 6).

A. Convergence Analysis

The convergence properties of the algorithm can be studied
by directly applying the theory of the O.D.E. method for
stochastic approximation in multiple timescales as detailed
in [22]. In the case of two timescales, we have the following
theorem proven by Borkar in Ch. 6 of [20]:

Theorem 2: Consider the sequences {xn} ∈ S ⊆ Rd and
{yn} ∈ Σ ⊆ Rk, generated by the iterative scheme:

xn+1 = xn + α(n)
[
h(xn, yn) +M

(x)
n+1

]
yn+1 = yn + β(n)

[
g(xn, yn) +M

(y)
n+1

] (9)

for n ≥ 0, and assume that∑
n

α(n) =
∑
n

β(n) =∞,∑
n

(α2(n) + β2(n)) <∞,

β(n)

α(n)
→ 0.

with the last condition implying that the iterations for {yn}
run on a slower timescale than those for {xn}. If the equation

ẋ(t) = h(x(t), y), x(0) = x0
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has an asymptotically stable equilibrium λ(y) for fixed y and
some Lipschitz mapping λ, and the equation

ẏ(t) = g(λ(y(t)), y(t)), y(0) = y0

has an asymptotically stable equilibrium y∗, then, almost
surely, (xn, yn) converges to (λ(y∗), y∗).

We have shown that the sVQ algorithm (4) is a convergent
stochastic approximation algorithm [19], and it has been
shown that the Q−learning algorithm, and, as a result,
the value function approximation component of (8) is a
convergent stochastic approximation algorithm as well [4],
[26]. Based on the Definitions 1 and 4, and using (7), and
Theorem 2, we can prove the following theorem:

Theorem 3: Algorithm (8) converges almost surely to
(V ∗, µ∗) where µ∗ is a solution to the divergence-based
vector quantization problem (Problem 1) defined in the state
space S, and V ∗ := (V ∗1 , . . . , V

∗
k ) is the solution of

Vh = min
u

E [C(x, u)|x ∈ Sh] + γE′ [Vh′ |Xh]

where Sh = {x ∈ S : h = arg min
τ=1,...,k

d(x, µ∗(τ))} are as-

sumed to be visited infinitely often, h = 1, . . . , k, and E′
is defined with respect to the probability measure (7).

IV. EXPERIMENTAL RESULTS

A. The CartPole Problem

We assess the efficacy of the proposed methodology on the
Cart-pole (inverted pendulum) problem. The state variable of
the cart-pole system (Fig. 1) has four components (x, θ, ẋ, θ̇),
where x and ẋ are the position and velocity of the cart on
the track, and θ and θ̇ are the angle and angular velocity of
the pole with the vertical. The cart is free to move within
the bounds of a one-dimensional track. The pole is free to
move only in the vertical plane of the cart and track.

Fig. 1. Cart-pole system to be controlled ([23]).

The action space consists of an impulsive “left” or “right”
force F ∈ {−10,+10}N of fixed magnitude to the cart at
discrete time intervals. The cart-pole system is modeled by
the following nonlinear system of differential equations [23]:

ẍ =
F +ml

(
θ̇2 sin θ − θ̈ cos θ

)
µcsgn(ẋ)

mc +m

θ̈ =
g sin θ + cos θ

(
−F−mlθ̇2 sin θ+µcsgn(ẋ)

mc+m

)
− µp

ml
µcsgn(ẋ)

l
(

4
3
− m cos2 θ

mc+m

)
where the parameter values for g,mc,m, l, µc, µp can be

found in [23]. The transition function for the state x is

xn+1 = xn + τ ẋ, where τ = 0.02s. The initial state is set
to X0 = (ux, uθ, uẋ, uθ̇) where ux, uθ, uẋ, and uθ̇ follow
a uniform distribution U(−0.05, 0.05). Failure occurs when
|θ| > 12◦ or when |x| > 2.4m.

B. Q-Learning with Adaptive State Aggregation

While sVQ in (4) updates only the winner neuron at each
iteration, in the context of state aggregation, the topological
properties of SOM, which allow for updating all neurons in
a given neighborhood at each iteration, can accelerate con-
vergence, promote smoother transitions between iterations,
and avoid poor local optima. Therefore, we introduce a Q-
learning algorithm with Adaptive State Aggregation based
on SOM, as a variant of (8). The full algorithm is shown in
Alg. 2. As described above, we use Gaussian neighborhood
function for the SOM algorithm with Σ being a diagonal
matrix of elements that decrease over time. We train the
algorithm with πL being the ε−greedy exploration policy,
and stepsizes αn = 1/1+(α0+nδα) and βn = 1/1+(β0+n lognδβ)

for appropriate values of α0, β0, δα, δβ . We ensure the two-
timescale effect by progressively increasing N . We use the
Euclidean distance as the Bregman divergence dφ.

Algorithm 2 Q−learning with SOM-based state aggregation
Initialize Q0(h, u), ∀h ∈ {1, . . . , k} , u ∈ U

repeat
Observe x and find

h = arg min
τ=1,...,k

dφ(x, µ(τ))

Choose u′ = πL(h)
Observe x′ = f(x, u′) and find

h′ = arg min
τ=1,...,k

dφ(x′, µ(τ))

Update Q−function:

Qi+1(h, u′) = Qi(h, u
′) + αi[C(x, u′)

+ γmin
u
Qi(h

′, u)−Qi(h, u′)]

if i mod N = 0 then
Update partition:

µi+1(h) = µi(h)

− βiG(µi(h), µi(h
∗),Σ(t))∇µdφ (x, µi(h))

h∗ = arg min
τ=1,...,k

dφ(x, µi(τ))

end if
until Convergence criterion is satisfied
Update Policy:

uε(x) = arg min
u

{ Qε(x, u) }

In order to illustrate one of the major advantages of
adaptive state aggregation, which is memory efficiency, we
initialize µ by uniformly discretizing over Ŝ = [−1, 1] ×
[−4, 4]× [−1, 1]× [−4, 4] with 625 clusters, corresponding
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to a standard discretization scheme with only 5 bins for
each dimension. In Fig. 2 we compare the average (over
100 episodes) number of timesteps achieved until failure
using the standard Q−learning algorithm, and the proposed
algorithms (8) and Algorithm 2.

Fig. 2. Average number of timesteps (over 100 episodes) in the Cart-
pole problem (Fig. 1) achieved by a Q-learning algorithm without state
aggregation (black), a Q-learning algorithm with state aggregation based on
sVQ (8) (blue), and a Q-learning algorithm with state aggregation based on
SOM (Alg. 2) (red).

We observe that state aggregation with sVQ (8) can pro-
vide a boost in the performance of the Q-learning algorithm,
but heavily depends on the initial configuration. Notably,
SOM seems better suited for reinforcement learning appli-
cations, as Alg. 2 yields considerably better performance
compared to the other algorithms. This is mainly due to the
topological properties of SOM, which can accelerate con-
vergence and avoid poor local optima. We expect annealing
methods, such as the Online Deterministic Annealing [28],
which is formulated as a stochastic approximation algorithm,
to exhibit similar performance boost, with the added benefit
of automatically deciding the number of clusters. We note
that in our state aggregation scheme, we have assigned only 5
bins for each of the 4 dimensions of the MDP at hand, giving
more weight on finding a good partition of the state-space
rather than using a large number of naively chosen aggregate
states. Finally, we note that the performance of the proposed
reinforcement learning algorithm (Alg. 2) depends on several
hyperparameters such as the the profile of the stepsizes αi
and βi and the choice of the neighborhood function G used
in the SOM algorithm.

V. CONCLUSION

We have shown that online vector quantization algorithms
can be used as adaptive state aggregation schemes along with
temporal-difference reinforcement learning algorithms. We
studied the convergence of the resulting algorithm as a two-
timescale stochastic approximation algorithm with: (a) a fast
component that executes a temporal-difference reinforcement
learning algorithm, and (b) a slow component that adaptively
partitions the state space of a Markov decision process
according to a dissimilarity measure based on Bregman
divergences. Finally, we proposed a Q-learning algorithm
with adaptive state aggregation based on self-organizing map
(SOM) and solved the Cart-pole (inverted pendulum) optimal
control problem with few aggregate states.
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