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Abstract— Prototype-based learning methods have been ex-
tensively studied as fast, recursive, data-driven, interpretable,
and robust learning algorithms. We study the effect of en-
tropy regularization in prototype-based learning regarding (i)
robustness with respect to the dataset and the initial conditions,
and (ii) the generalization properties of the learned represen-
tation. A duality relationship, with respect to a Legendre-type
transform, between free energy and Kulback-Leibler divergence
measures, is used to show that entropy-regularized prototype-
based learning is connected to exponential objectives associated
with risk-sensitive learning. We use these results to incen-
tivize the development of entropy-regularized prototype-based
learning algorithms by highlighting its properties, including (i)
memory and computational efficiency, (ii) gradient-free training
rules, and (iii) the ability to simulate an annealing optimiza-
tion process that results in progressively growing competitive-
learning neural network architectures.

I. INTRODUCTION

Learning from data samples has become an important part
of machine intelligence and a component of virtually all
autonomous cyber-physical systems. In particular, prototype-
based learning algorithms [1]–[5] can provide valuable in-
sights into the nature of the space of the observations, and
is being used in numerous applications, including supervised
[1], [6] unsupervised [7], and reinforcement learning [8], [9].

The main idea behind prototype-based learning is the
representation of the data space –which is assumed to be a
finite-dimensional vector space– by a set of representatives
M := {µi}, typically called prototypes, or codevectors
[3], in an optimal way according to an average distortion
measure:

min
M

J(M) := E
h
min
i

d(X,µi)
i
,

where the proximity measure d defines the similarity between
the random input X and a codevector µi. Representing
the input in terms of memorized exemplars is an intuitive
approach which parallels similar concepts from cognitive
psychology and neuroscience. In this regard, prototype-based
algorithms can be viewed as interpretable, robust [10], data-
driven and topology-preserving competitive-learning neural
network architectures, which can be formulated as online
stochastic approximation algorithms [1], [5], that are fast to
train and sparse in the sense of memory complexity.
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Entropy regularization requires relaxing the original prob-
lem to a soft-clustering problem, introducing the association
probabilities p(µi|X), and replacing the cost function J
by D(M) := E [

P
i p(µi|X)d(X,µi)]. This probabilistic

framework allows the use of the Shannon entropy H(M)
as a measure of uncertainty induced by the prototype-based
representation. One can replace the original problem by

min
M

F�(M) := D(M)� �H(M),

parameterized by a coefficient �, which acts as a Lagrange
multiplier controlling the trade-off between minimizing the
distortion D and maximizing the entropy H .

In this work, we use known results on the duality, with re-
spect to a Legendre-type transform, between the free energy
logE

⇥
eZ

⇤
of a random variable and Kulback-Leibler diver-

gence measures, to show that entropy-regularized prototype-
based learning is connected to exponential criteria asso-
ciated with risk-sensitive learning [11]–[13]. Through this
connection, the results of this work formally support the ex-
perimental observations that entropy regularization provides
robustness with respect to input perturbations and initial
conditions [1], [14]. Finally, we use these results to in-
centivize the development of entropy-regularized prototype-
based learning algorithms, which have recently shown sev-
eral appealing properties [1], [7], [9], [15], including the
ability to (i) simulate an annealing optimization process that
results in progressively growing competitive-learning neural
network architectures, and (ii) formulate the training rule
as a gradient-free stochastic approximation algorithm with
convergence guarantees.

II. PROTOTYPE-BASED LEARNING

Prototype-based learning algorithms construct a set of
prototype vectors as an optimal representation of the data
space [2], [3], [5]. In particular, given a random variable
X : ⌦ ! S ✓ Rd defined in a probability space (⌦,F,P),
and a divergence measure d : S ⇥ ri(S) ! [0,1), where
ri(S) represents the relative interior of S, prototype-based
unsupervised learning seeks to identify a set of codevectors
M := {µh}Kh=1, where µh 2 ri(Sh), for all h = 1, . . . ,K,
such that the function Q : S ! M , defined as the random
variable Q(X) =

PK
h=1 µh1[X2Sh] minimizes the objective

function:

min
M,V

J(Q) := E [d (X,Q)] . (1)

This is essentially a hard-clustering problem, i.e., the quan-
tizer Q assigns an input vector X to a unique codevector
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µh 2 M with probability one, and is equivalent to

min
{µh}K

h=1

KX

h=1

E
⇥
d (X,µh)1[X2Sh]

⇤
(2)

where V := {Sh}Kh=1 is a Voronoi partition, i.e.,

Sh =

⇢
x 2 S : h = argmin

⌧=1,...,K
d(x, µ⌧ )

�
, h = 1, . . . ,K.

The actual distribution of X 2 S is usually unknown, and
a set of independent realizations {Xi}ni=1 := {X(!i)}ni=1,
for !i 2 ⌦, are available instead. In case the observations
{Xi}ni=1 are available a priori, the solution to Problem (1)
can be approximated by variants of the LBG algorithm [16],
which includes the widely used k-means algorithm [17], but
recursive algorithms have been also developed [5] in case of
online observations.

Problem (1) can be extended for supervised learning. In
this case, Learning Vector Quantization (LVQ) algorithms
[18], can be formulated in a similar framework as vector
quantization algorithms that solve Problem (1), by making
use of a modified distortion measure [18]–[20]. Because of
their similar structure, the analysis presented in this work will
be focused on the unsupervised problem. The results can be
directly extended to the supervised problems, as well.

A. The role of Bregman Divergences

Prototype-based algorithms rely on a divergence measure
d that quantifies the proximity between different vector
representations. Bregman divergences offer a generalization
of convex metrics, and are defined as follows: Let � : H !
R, be a strictly convex function defined on a vector space H
such that � is twice F-differentiable on H . Then, a Bregman
divergence d� : H ⇥H ! [0,1) is defined as:

d� (x, µ) = � (x)� � (µ)� @�

@µ
(µ) (x� µ) , (3)

where x, µ 2 H , and the continuous linear map @�
@µ (µ) :

H ! R is the Fréchet derivative of � at µ.
Bregman divergences have been shown to enhance the

performance of learning algorithms [21]. Two notable ex-
amples of Bregman divergences are the squared Euclidean
distance d�(x, µ) = kx � µk2 (generated by the function
�(x) = hx, xi , x 2 Rd), and the generalized I-divergence
d�(x, y) = hx, log x� logµi � h1, x� µi which reduces to
the widely used Kullback-Leibler divergence if h1, xi = 1.

More importantly, they have been shown (see [1] and the
references therein) to be both necessary and sufficient for
the optimizer µh of (2) to be analytically computed as the
expected value µh := E [X|Sh] of the data inside Sh, which
is implicitly used by many “centroid” algorithms, such as k-
means [17]. In Section III, we will show a similar result for
the proposed algorithm that uses a soft-partition approach.

III. SOFT-CLUSTERING AND ENTROPY REGULARIZATION

In the clustering problem (Problem 1), the distortion
function J is typically non convex and riddled with poor
local minima.

Soft-clustering approaches have been proposed as a prob-
abilistic generalization of the clustering problem (1), in an
attempt to deal with poor local minima. In this case, the
input vector X is assigned, through the quantizer Q, to all
codevectors µh 2 M with probabilities p(µh|X) , wherePK

h=1 p(µh|X) = 1. The quantizer Q : S ! M becomes
a discrete random variable, with the set M being its image,
and can be fully described by the values of M = {µh}Kh=1

and the probability functions {p(µh|x)}Kh=1. We can rewrite
the expected distortion as

D(M) = E [d�(X,Q)]

= E [E [d�(X,Q)|X]]

=

Z
p(x)

X

µ

p(µ|x)d�(x, µ) dx

where p(µ|x) is the association probability relating the input
vector x with the codevector µ.

The main idea behind entropy regularization, is to seek
the distribution that minimizes D subject to a specified level
of randomness, measured by the Shannon entropy

H(M) = E [� log p(X,Q)]

= H(X) +H(Q|X)

= H(X)�
Z

p(x)
X

µ

p(µ|x) log p(µ|x) dx

by appealing to Jaynes’ maximum entropy principle [22].
This multi-objective optimization is conveniently formulated
as the minimization of the Lagrangian

min
M

F�(M) := D(M)� �H(M) (4)

where � is a parameter that acts as a Lagrange multiplier.
As � varies, the sequence of the solutions will correspond
to a Pareto curve of the multi-objective optimization (4). In
this regard, the entropy H , acts as a regularization term.

However, one central question to be answered is what
exactly F� represents, and why would someone seek to
minimize this measure instead of just the average distortion
D. In Section IV we show that minF� represents the free en-
ergy � logE

h
e

1
�d�(X,Q)

i
which is directly connected to risk-

sensitive learning objectives. This result formally supports
why solving (4) as the sequence of problems for decreasing
coefficients �, resembles an annealing optimization process,
as will be discussed in Section V.

To minimize F� in (4) we form a coordinate block
optimization algorithm, by successively minimizing it with
respect to the association probabilities p(µ|x) and the code-
vector locations µ. Minimizing F with respect to the asso-
ciation probabilities p(µ|x) is straightforward and yields the
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Gibbs distribution

p(µ|x) = e�
d(x,µ)

�

P
µ e

� d(x,µ)
�

, 8x 2 S (5)

while, in order to minimize F with respect to the codevector
locations µ we set the gradients to zero

d

dµ
D = 0 =) d

dµ
E [E [d(X,µ)|X]] = 0

=)
Z

p(x)p(µ|x) d

dµ
d(x, µ) dx = 0

(6)

The following theorem, proved in [1], shows that there is
an analytical solution to the last optimization step (6) in a
convenient centroid form, if d is a Bregman divergence.

Theorem 1: Assuming the conditional probabilities
p(µ|x) are fixed, the Langragian F� in (4) is minimized
with respect to the codevector locations µ by

µ⇤ = E [X|µ] =
R
xp(x)p(µ|x) dx

p(µ)
(7)

if d := d� is a Bregman divergence for some function � that
satisfies the definition.

IV. RISK SENSITIVITY AND ENTROPY REGULARIZATION

In this Section, we use known results on the dual-
ity, with respect to a Legendre-type transform, between
the free energy logE

⇥
eZ

⇤
of a random variable Z and

Kulback-Leibler divergence measures, to show that entropy-
regularized prototype-based learning is connected to expo-
nential objectives associated with risk-sensitive learning.

A. Risk Sensitive Learning

Risk-sensitive learning algorithms are based on objective
functions that incorporate some notion of risk, e.g., higher
moments of the cost function, and have shown promising
results in addressing some of the issues associated with risk-
neutral learning [11]–[13], [23]. A widely used risk-sensitive
objective is the exponential criterion [24]:

min
µ

J�(µ) :=
1

�
logE

h
e�C(µ)

i
(8)

where C(µ) represents a cost function that depends on a
parameter vector µ 2 Rd, and the risk parameter � 2 R is
a design parameter, which controls the level of risk-seeking
or risk-averse behaviour of the agent. Optimization of risk-
sensitive performance measures have a long history, starting
with Markowitz mean-variance Portfolio Theory [25]. The
exponential criterion is a mathematically convenient and
intuitively appealing risk measure with a firm theoretical
foundations rooted in Large Deviation Theory. Its Taylor’s
series expansion reads as
1

�
logE

h
e�C(µ)

i
= E [C(µ)] +

�

2
Var [C(µ)] +O(�2) (9)

revealing that the risk parameter � controls the trade-off
between the maximization of the expectation and maximiza-
tion/minimization of risk, quantified mainly by the variance
Var [C(µ)] of the cost function C(µ) and to a lesser degree

by higher order terms. When J� is an objective function to be
minimized (as in (8)), it is called risk-averse (or “pesimistic”)
for � > 0 and risk-seeking (or “optimistic”) for � < 0.

B. Duality between Free Energy and KL divergence

Consider a measurable space (⌦,F, where F) is a �-
algebra on ⌦. Let P(⌦) be a set of probability measures
P : ⌦ ! [0, 1], and Pµ, P⌫ 2 P(⌦). In addition, consider a
bounded measurable function Z : ⌦ ! R. The exponential
criterion

J�(Z) =
1

�
logEPµ

⇥
e�Z

⇤
(10)

is called free energy [26]. It is known (see e.g. [27] and the
references therein) that the free energy J�(Z) and the KL
divergence:

DKL(P⌫ , Pµ) =

(R
log( dP⌫

dPµ
)dP⌫ if CKL(P⌫ , Pµ)

1 otherwise
(11)

are in duality with respect to a Legendre-type transform [28],
in the following sense:

J�(Z) =

8
<

:
supP⌫2P(⌦)

n
EP⌫ [Z]� 1

�DKL(P⌫ , Pµ)
o
, � > 0

infP⌫2P(⌦)

n
EP⌫ [Z]� 1

�DKL(P⌫ , Pµ)
o
, � < 0

(12)
Here the conditions CKL(P⌫ , Pµ) include P⌫ ⌧ Pµ andR
log( dP⌫

dPµ
)dP⌫ 2 L1(P⌫).

C. Connection to Entropy-regularized Prototype-based

Learning

We can formulate the risk-sensitive objective for
prototype-based learning problem according to the defini-
tions of Section III and IV-A. As before, let X : ⌦ !
S ✓ Rd be a random vector defined in a measurable space
(⌦,F), equipped with a set P(⌦) of probability measures
P : ⌦ ! [0, 1], and µ := {µh}Kh=1 a set of codevectors,
such that µh 2 S, for all h = 1, . . . ,K. Let also a quantizer
Q : S ! µ be a discrete random variable, with the set µ
being its image.

We define the random vector Z = (X,Q) 2 R2d and a
Bregman divergence measure (see Section II-A) d : Rd ⇥
Rd ! [0,1) such that d : ⌦ ! R is a bounded measurable
function. We note that a measurable function Pµ : (X,Q) 7!
[0, 1] depends on the parameters µ := {µh}Kh=1 and is a
probability measure in (⌦,F), i.e., Pµ 2 P(⌦). The risk-
sensitive prototype-based learning objective now takes the
form:

J�(µ) :=
1

�
logE

h
e�d(Zµ)

i
(13)

where we have used the implicit notation Zµ ⇠ Pµ, i.e.,
E
⇥
e�d(Zµ)

⇤
:= EZ⇠Pµ

⇥
ed(Z)

⇤
. Using the duality relation

(12), the risk-sensitive objective function (13) becomes:

J�(µ) =

8
<

:
sup⌫

n
E [d(Z⌫)]� 1

�DKL(P⌫ , Pµ)
o
, � > 0

inf⌫
n
E [d(Z⌫)]� 1

�DKL(P⌫ , Pµ)
o
, � < 0

(14)
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where it is understood that Zµ ⇠ Pµ and Z⌫ ⇠ P⌫ with µ, ⌫
being different parameter vectors (sets of codevectors), and
Pµ, P⌫ 2 P(⌦).

We focus on the “optimistic” problem, i.e., when � < 0,
and, without loss of generality, assume that the infimum can
be attained, i.e.,

J�(µ) = min
⌫

⇢
E [d(Z⌫)]�

1

�
DKL(P⌫ , Pµ)

�
(15)

Equation (15) is similar to the entropy-regularization prob-
lem in (4) and can give insights on what the Lagrangian F�

in (4) represents, justify the properties of the algorithms that
are based on it, and reveal ways that these algorithms can
be generalized.

In particular, under the assumption that Pµ is a uniform
probability measure, the KL divergence can be written as
�DKL(Pµ, P⌫) = H(Pµ) � I , where I is a constant term
[29]. Therefore, in this case (15) is equivalent with

J�(µ) = min
⌫

⇢
E [d(Z⌫)]�

1

|�|H(Z⌫)

�
, µ ⇠ U (16)

where H(Z⌫) = EZ⇠P⌫ [� log p(Z)] represents the joint
entropy of Z = (X,Q) under the probability measure P⌫ . It
follows directly that minF� = J 1

|�|
(µ), if µ ⇠ U follows the

uniform distribution. In other words, under the assumption
that Pµ is a uniform probability measure, the Lagrangian F�

represents the Helmholtz free energy in statistical mechanics
[26], a result that formally explains the properties of the
annealing process described in Section V-B.

Notice that the Helmholtz free energy is only one in-
stance of the objective function J� , and different heuristic
assumptions on the probability measure Pµ result in different
measures J� . For example, if we assume that Pµ = P⌫ ,
then DKL(P⌫ , Pµ) = 0, and (15) retrieves the risk-neutral
learning problem:

J�(µ) = min
⌫

E [d(Z⌫)] , µ = ⌫ (17)

where Z⌫ = (X,Q) ⇠ P⌫ ⇠ Pµ. As a final note, solving the
risk-sensitive learning problem (13) makes no assumption on
the measure Pµ, and results in a joint optimization problem

min
µ

J�(µ) = min
µ

1
�
logE

h
e�d(Zµ)

i

=

8
<

:
minµ max⌫

n
E [d(Z⌫)]� 1

�DKL(P⌫ , Pµ)
o
, � > 0

minµ min⌫

n
E [d(Z⌫)]� 1

�DKL(P⌫ , Pµ)
o
, � < 0

(18)
Equation (18) reveals that the risk-sensitive problem im-
plicitly computes the optimal representation Pµ instead of
relying on different heuristics, but constitutes a significantly
harder problem to solve numerically. The advantages of
solving the entropy-regularization problem in (4) instead are
highlighted in Section V.

V. PROPERTIES OF ENTROPY-REGULARIZED
PROTOTYPE-BASED LEARNING

In this section we demonstrate the potential advantages
of solving the entropy-regularized problem defined in (4)
compared to solving the original vector quantization Problem
(1) and its risk-sensitive counterpart in (18).

A. Robustness

As explained in Section IV-C, the entropy-regularized
objective F 1

|�|
in (4) is connected to the risk-sensitive ex-

ponential objective 1
� logE

⇥
e�d�(X,Q)

⇤
, the Taylor’s series

expansion of which reads as

D(X,Q) +
�

2
Var [d�(X,Q)] +O(�2) (19)

where � < 0. In other words, the average distortion ob-
jective function has been augmented by the variance term
Var [d�(X,Q)], and, to a lesser degree, by higher order
terms. The variance term is connected to the distribution of
the random vector (X,Q). Minimizing the distortion mea-
sure D(X,Q) subject to a level of variance Var [d�(X,Q)]
is a heuristic approach that alleviates the effect of the
initial conditions (random variable Q), which aligns with the
observations found in [1]. The same reasoning extends to the
robustness of the approach with respect to perturbations in
the dataset, which are associated with the random variable
X . The variance term Var [d�(X,Q)] is directly connected to
the dissimilarity measure E

⇥
d�(X,µh)1[X2Sh]

⇤
inside each

Voronoi region Sh (see Section II), as opposed to the total
average distortion

R
p(x)

P
h p(µh|x)d�(x, µh) dx which is

minimized by the first term D(M). This is directly connected
to the “purity” of each cluster, in terms of how cohesive each
Voronoi region is forced to become, i.e., the parameter �
implicitly controls the average distortion of the data points
of each Voronoi region with respect to their representative.

B. Progressively Growing Set of Prototypes

Solving the entropy-regularized problem (4) can add sev-
eral interesting properties to the implementation of the learn-
ing algorithm. One such property is the ability to progres-
sively “grow” the set of codevectors M = {µh}Kh=1, by adap-
tively adding more codevectors, thus increasing the number
K. We note that if the prototype-based learning architecture
is viewed as a competitive-learning neural network, this
property provides the ability to start with a few neurons and
progressively grow the neural network as needed.

The main observation towards this goal is to view the
minimization of the Lagrangian F� in (4)

min
M

F�(M) := D(M)� �H(M)

as a sequence of deterministic optimization problems, param-
eterized by the Lagrange coefficient �, that are progressively
solved at successively reducing parameter levels. This has
been shown to correspond to an annealing process [1], [14]
where � represents a temperature level T . This annealing
process is experimentally shown to contribute to avoiding
poor local minima, and provide robustness with respect to
the initial conditions. We stress that both these properties
are formally justified by the analysis given in this work.

Adding to the robustness properties of this annealing
process, it is significant that, as the temperature T is lowered,
the system undergoes a sequence of “phase transitions”,
which consists of natural cluster splits where the cardinality
of the codebook (number of clusters) increases. This is
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a bifurcation phenomenon and provides a useful tool for
controlling the size of the clustering model relating it to the
scale of the solution. At very high values (� ! 1) the
optimization yields uniform association probabilities

p(µ|x) = lim
T!1

e�
d(x,µ)

T

P
µ e

� d(x,µ)
T

=
1

K

and, provided d := d� is a Bregman divergence, all the
codevectors are located at the same point µ = E [X], which
is the expected value of X (Theorem ??). This is true
regardless of the number of codevectors available. As T
decreases and reaches a critical temperature level, the number
of unique solutions to the optimization problem increases.
The number of different codevectors resulting from the
optimization process is referred to as effective codevectors

[1]. These define the cardinality of the codebook, which
changes as we lower the temperature. In other words, an
algorithmic implementation needs only as many codevectors
as the number of effective codevectors, which depends only
on the parameter T (or �), i.e. the Lagrange multiplier of
the multi-objective minimization problem in (4).

We showcase this bifurcation phenomenon in two sim-
ple, but illustrative, binary classification problems in two
dimensions (Fig. 1). The underlying class distributions are
shaped as concentric circles (Fig. 1a), and half moons
(Fig. 1b), respectively. All datasets consist of 1500 samples.
Since the objective is to give a geometric illustration of
how the algorithm works, the squared Euclidean distance
is used as a proximity measure. The algorithm starts at
high values of T (or �) with a single codevector for each
class. As the temperature coefficient T gradually decreases
(Fig. 1, from left to right), the number of codevectors, i.e.,
the complexity of the model, progressively increases. The
accuracy of the algorithm typically increases as well. Finally,
Fig. 1c showcases the robustness of the proposed algorithm
with respect to the initial configuration. Here the codevectors
are poorly initialized outside the support of the data, which
is not assumed known a priori (e.g. online observations of
unknown domain). In this example the LVQ algorithm has
been shown to fail [30]. In contrast, the entropy term H
in the optimization objective of (4), allows for the online
adaptation to the domain of the dataset and helps to prevent
poor local minima.

C. Recursive Gradient-Free Training Rule

Another advantage of the entropy-regularized problem (4)
is the existence of an analytic solution to the optimization
problem, given by (5), and (7). While the Gibbs distribution
in (5) is easy to compute, the conditional expectation E [X|µ]
in eq. (7) needs to be approximated by the use of a large
dataset. This is not ideal in most practical applications and
results to computationally costly iterations that are slow to
converge. We note that this is a problem that occurs when
trying to solve the risk-sensitive problem (13), as well.

To deal with this problem, an Online Deterministic An-
nealing (ODA) algorithm was proposed in [1], as a recur-
sive training rule that dynamically updates an estimate of

(a) Concentric circles.

(b) Half moons.

(c) Poor initial conditions.

Fig. 1: (a)-(b)Illustration of the evolution of the annealing
process for decreasing temperature T in binary classification
in 2D. (c) Showcasing robustness with respect to bad initial
conditions.

the effective codevectors using one data observation at a
time. The online training rule is formulated as a stochastic
approximation algorithm [1]:
(
⇢i(n+ 1) = ⇢i(n) + ↵(n) [p̂(µi|xn)� ⇢i(n)]

�i(n+ 1) = �i(n) + ↵(n) [xnp̂(µi|xn)� �i(n)]
(20)

where the quantities p̂(µi|xn) and µi(n) are recursively
updated as follows:

p̂(µi|xn) =
⇢i(n)e�

d(xn,µi(n))
T

P
i ⇢i(n)e

� d(xn,µi(n))
T

µi(n) =
�i(n)

⇢i(n)
,

(21)

The recursive algorithm (20), (21) is gradient-free and
converges almost surely to a possibly sample path dependent
solution of the block optimization (5), (7) [1].

D. Reduced Complexity

The recursive nature of the algorithm (20), (21) results in a
significant reduction in complexity, that comes in two levels.
The first refers to the recursive nature of the optimization
iterations and the fact that no gradients need to be estimated.
The second refers to huge reduction in memory complexity,
since we bypass the need to store the entire dataset, as well
as the association probabilities {p(µ|x), 8x} that map each
data point in the dataset to each cluster.

The complexity of the recursive approach (20), (21) for a
fixed temperature coefficient Ti (or �i) is O(Nci(2Ki)2d),
where Nci is the number of stochastic approximation iter-
ations needed for the convergence of (20) and corresponds
to the number of data samples observed, Ki is the number
of codevectors of the model at temperature Ti, and d is the
dimension of the input vectors, i.e., X 2 S ✓ Rd. Therefore,
assuming a training dataset of N samples and a temperature
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schedule {T1 = Tmax, T2, . . . , TNT = Tmin}, the worst case
complexity of the annealing approach becomes [6]:

O(Nc(2K̄)2d)

where Nc = maxi {Nci} is an upper bound on the number of
data samples observed until convergence at each temperature
level, and

NT  K̄  min

8
<

:

NT�1X

n=0

2n,

log2 KmaxX

n=0

2n

9
=

; < NTKmax

where the actual value of K̄ depends on the bifurcations
occurred as a result of reaching critical temperatures and
the effect of the regularization mechanisms described above.
Note that typically Nc ⌧ N as a result of the stochastic
approximation algorithm, and K̄ ⌧ NTKmax as a result
of the progressive nature of the ODA algorithm. For more
details the readers are referred to [6].

VI. CONCLUSION

We have studied the effect of entropy regularization in
prototype-based learning regarding the learned representation
(set of prototypes) and the robustness of the algorithm
implementations. We use known results on the duality, with
respect to a Legendre-type transform, between the free en-
ergy and Kulback-Leibler divergence measures, to show that
entropy-regularized prototype-based learning is connected to
exponential objectives associated with risk-sensitive learning.
We use these results to incentivize the development of
entropy-regularized prototype-based learning algorithms as
recursive, data-driven, interpretable, robust, and fast to train
and evaluate algorithms for both unsupervised and supervised
problems. In particular we highlight their (i) memory and
computational efficiency, (ii) ability to be trained with recur-
sive gradient-free optimization methods, and (iii) ability to
simulate an annealing optimization process that results in the
development of progressively growing competitive-learning
neural network architectures.
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