
Explainable Learning with Hierarchical
Online Deterministic Annealing⋆ ⋆⋆

Christos N. Mavridis[0000−0001−9612−8903] and John S.
Baras[0000−0002−4955−8561]

University of Maryland, MD 20742, USA
{mavridis,baras}@umd.edu

Abstract. We introduce a general-purpose hierarchical approximation
algorithm based on the principles of online deterministic annealing, show-
casing its properties in the context of explainable machine learning. The
main idea is to progressively construct a partition of the data space us-
ing gradient-free stochastic approximation updates and use local learning
models that can be trained online using two-timescale stochastic approxi-
mation. As the partition adapts to the data space at hand, a progressively
more detailed representation of the the data space is constructed in the
form of a hierarchically structured set of regions. Mathematically, this
is a tree-structured partition in a multi-resolution representation of the
data space. As a result, the complexity of the local models is greatly
reduced and common problems such as over-fitting and poor local min-
ima can be mitigated. In addition, this process introduces hierarchical
variable-rate feature extraction properties similar to certain classes of
deep learning architectures. Experimental results for supervised learning
problems illustrate the properties of the proposed method as an explain-
able machine learning algorithm.

Keywords: Explainable AI · Online Deterministic Annealing · Hierar-
chical Learning · Hierarchical Clustering · Stochastic Approximation.

1 Introduction

While recent deep learning methods have shown experimental success as complex
general function approximation models over the entire data space [12,15,17,18],
there are still open problems regarding the time, energy, data, memory, and
computational cost of the estimation of θ [33,34], the phenomena of robustness,
over-fitting, and poor local minima [4], and the explainability properties of these
models [13, 31]. In particular, the use of complex black-box models inherently
⋆ Research partially supported by ONR grant N00014-17-1-2622, and by a grant from

Northrop Grumman Corporation.
⋆⋆ Paper published in Machine Learning and Principles and Practice of Knowl-

edge Discovery in Databases. ECML PKDD 2023. Communications in Computer
and Information Science, vol 2134. Springer, Cham. https://doi.org/10.1007/
978-3-031-74627-7_32.

https://doi.org/10.1007/978-3-031-74627-7_32
https://doi.org/10.1007/978-3-031-74627-7_32

2 C. N. Mavridis et al.

hinders the ability to understand the properties of the data space, information
that can be used to enhance the performance of the optimization algorithms,
reduce their complexity, improve their robustness with respect to noise and ad-
versarial attacks, and support lifelong learning [31].

In this work, we focus on a framework for hierarchical progressive learning
and data representation, where a gradually growing and hierarchically struc-
tured set of learning models is used for function approximation. We consider a
prototype-based learning framework where a set of prototypes (also called code-
vectors or neurons) are scattered in the data space S to encode subsets/regions
{Si} that form a partition of S [5]. This adheres to the principles of vector quan-
tization for signal compression [14]. In this regard, a knowledge representation
can be defined as a set of codevectors {µi ∈ S} that induce a structured parti-
tion {Si} of the data space, along with a set of local learning models f̂(x, θi)
associated with each region Si, parameterized by their own set of parameters
θi. A structured representation like this allows, among other things, to locate
regions of the space that the algorithm needs to approximate in greater detail,
according to the problem at hand and the designer’s requirements. This results
in adaptively allocating more resources in the subsets of the data space that
are needed, and provides benefits in terms of time, memory, and model com-
plexity [22]. Moreover, learning with local models that take advantage of the
differences in the underlying distribution of the data space provides a means to
understand certain properties of the data space itself, i.e., this is an interpretable
learning approach [32]. An illustration of this framework is given in Fig. 1.

(a) Classical regression
problem.

(b) Combined problem of
partitioning and function
approximation.

(c) Hierarchical partitioning
and function approximation.

Fig. 1: Comparison of the classical regression problem over the entire data space
S with the problem of combined partitioning and regression.

Regarding the learning process, we are interested in algorithms that are able
to simultaneously solve both the problems of partitioning and function approx-
imation, given online (e.g., real-time) observations. This is of great importance
in many applications, and especially in the scope of learning algorithms for in-
ference and control in general cyber-physical systems [23, 26, 29]. To construct

Explainable Learning with Hierarchical Online Deterministic Annealing 3

a sequence of partitions with increasing number of subsets we build upon the
notion of Online Deterministic Annealing [27]. One important property of this
approach is that, by successively solving a sequence of optimization problems, a
series of bifurcation phenomena arises when the cardinality of the set of code-
vectors {µi} increases as needed.A second important property of this approach,
initially shown in [27], is that the optimization problems can be solved online
using gradient-free stochastic approximation updates [7]. We exploit the fact
that a stochastic approximation algorithm can be used as a training rule for
constructing the partition {Si}, to build a framework that simultaneously trains
the learning models

{
f̂(x, θi)

}
defined in each region Si. In particular, accord-

ing to the theory of two-timescale stochastic approximation [7], we define two
stochastic approximation algorithms that run at the same time and with the
same observations but with different stepsize schedules that define a fast and a
slow learing process. In our case the slow process approximates the parameters
{µi} and as a result the partition {Si}, and the fast process executes a function
approximation algorithm within each Si to find the optimal parameters θi for
the learning model f̂(x, θi).

Finally, by imposing a non-binary tree structure in the growing set of the
parameters {µi}, we show that we can both (a) greatly reduce the quadratic
(in the number of parameters µi) complexity of the approach, and (b) construct
a hierarchical and progressively growing tree-structured partition where each
layer of the tree is trained using different resolution representation of the data
space, according to an independent multi-resolution analysis. While this is a
general framework for multi-resolution learning, we show that, in the case when
convolution-based multi-resolution features are used, the proposed architecture
shares similarities with deep learning approaches such as Deep Convolutional
Networks [17] and Scattering Convolutional Networks [9]. Experimental results
illustrate the properties of the proposed approach in clustering, classification,
and regression applications.

2 Online Deterministic Annealing

We start our analysis with the case of unsupervised learning, where partitioning
a space S is equivalent to the problem of clustering and density estimation. In
this context, the observations (data) are independent realization of a random
variable X : Ω → S defined in a probability space (Ω,F,P), where S ⊆ Rd

is the observation space (data space). In the Online Deterministic Annealing
approach [23,27], one defines a similarity measure d : S → ri(S)1, and a discrete
random variable Q : S → ri(S) with domain µ := {µi}Ki=1, µi ∈ ri(S) described
by the association probabilities {p(µi|x) := P[Q = µi|X = x]}, ∀i, such that

min
µ

Fλ(µ) := (1− λ)D(µ)− λH(µ) (1)

1 ri(S) represents the relative interior of S.

4 C. N. Mavridis et al.

This is a multi-objective optimization problem formulated as the minimization of
a Lagrangian function, where λ ∈ [0, 1) acts as a Lagrange multiplier controlling
the trade-off between the average distortion:

min
µ

D(µ) := E [d (X,Q)] = E [E [d(X,Q)|X]] =

∫
p(x)

∑
i

p(µi|x)d(x, µi) dx

and the entropy term:

H(µ) := E [− logP (X,Q)] = H(X)−
∫

p(x)
∑
i

p(µi|x) log p(µi|x) dx.

The entropy H, acts as a regularization term, and is given progressively less
weight as λ decreases. The term T := λ

1−λ , λ ∈ [0, 1) can be seen as a tempera-
ture coefficient in a deterministic annealing process [27].

Following the Online Deterministic Annealing (ODA) approach [23, 27], we
minimize Fλ in (1) by successively minimizing it first respect to the association
probabilities {p(µi|x)}, and then with respect to the codevector locations µ. The
solution of the optimization problem

F ∗
λ (µ) := min

{p(µi|x)}
Fλ(µ) s.t.

∑
i

p(µi|x) = 1, (2)

is given by the Gibbs distributions p∗(µi|x) = e−
1−λ
λ

d(x,µi)∑
j e−

1−λ
λ

d(x,µj)
, ∀x ∈ S.

Furthermore, it has been shown in [27] that if d := dϕ is a Bregman divergence2,
then the conditional expectation:

µ∗
i = E [X|µi] =

∫
xp(x)p∗(µi|x) dx

p∗(µi)
(3)

is a solution to the optimization problem

min
µ

F ∗
λ (µ). (4)

Moreover, a stochastic approximation algorithm can be formulated [27] to re-
cursively estimate E [X|µi] directly, according to Theorem 1.

Theorem 1 ([27]). Let {xn} be a sequence of independent realizations of X.
Then µi(n), defined by the online training rule{

ρi(n+ 1) = ρi(n) + α(n) [p̂(µi|xn)− ρi(n)]

σi(n+ 1) = σi(n) + α(n) [xnp̂(µi|xn)− σi(n)]
(5)

2 The function dϕ is a Bregman divergence if there exists a strictly convex function ϕ
such that dϕ (x, µ) = ϕ (x) − ϕ (µ) − ∂ϕ

∂µ
(µ) (x− µ). Two notable examples are the

squared Euclidean distance dϕ(x, µ) = ∥x − µ∥2 (ϕ(x) = ⟨x, x⟩ , x ∈ Rd), and the
the generalized Kullback-Leibler divergence dϕ(x, µ) = ⟨x, log x− logµ⟩− ⟨1, x− µ⟩
(ϕ(x) = ⟨x, log x⟩ , x ∈ Rd

++). For more details see, e.g., [3, 23,25].

Explainable Learning with Hierarchical Online Deterministic Annealing 5

where
∑

n α(n) =∞,
∑

n α
2(n) <∞, and the quantities p̂(µi|xn) and µi(n) are

recursively updated as follows:

µi(n) =
σi(n)

ρi(n)
, p̂(µi|xn) =

ρi(n)e
− 1−λ

λ d(xn,µi(n))∑
i ρi(n)e

− 1−λ
λ d(xn,µi(n))

(6)

converges almost surely to a locally asymptotically stable solution of the opti-
mization (4), as n→∞.

The learning rule (5), (6) is a stochastic approximation algorithm [7]. In
addition, it is a discrete-time dynamical system that presents bifurcation phe-
nomena with respect to the parameter λ, i.e., the number of equilibria of this
system changes with respect to the value λ. Finally, in the limit λ→ 0, it results
in a consistent density estimator, i.e., the representation of the random variable
X ∈ S by the codevectors µ becomes all the more accurate in S, according to
the underlying probability density p(x) [23].

2.1 Bifurcation, Algorithmic Implementation, and Complexity

So far, we have assumed a countably infinite set of codevectors. In this section
we will show that the unique values of the set {µi} that solves (1), form a finite
set K(λ) of values that we will refer to as “effective codevectors”. These effective
codevectors are the only values that an algorithmic implementation will need
to store in memory and update. First, notice that when λ → 1 (resp. T → ∞)
equation (2) yields uniform association probabilities p(µi|x) = p(µj |x), ∀i, j, ∀x,
such that all codevectors are located at the same point µi = E [X] , ∀i, meaning
that there is one unique effective codevector given by E [X]. As λ is lowered
below a critical value, a bifurcation phenomenon occurs, when the number of
effective codevectors, i.e., the number of equillibria of (5), (6) increases. Follow-
ing principles from variational calculus, we can detect the critical values of λ
when bifurcation occurs [23]. However, as shown in Alg. 1, in practice we detect
the bifurcation points by introducing perturbing pairs of codevectors at each
temperature level λ. In this way, the codevectors µ are doubled and the newly
inserted codevectors will merge with their pair if a critical temperature has not
been reached and separate otherwise [27].

The complexity of Alg. 1 for fixed coefficient λt is O(Nct(2Kt)
2d), where

Nct is the number of stochastic approximation iterations needed for conver-
gence which corresponds to the number of data samples observed, Kt is the
number of codevectors of the model at temperature λt, and d is the dimension
of the input vectors, i.e., x ∈ Rd. Therefore, assuming a coefficient schedule
{λ1 = λmax, λ2, . . . , λNλ

= λmin}, the time complexity for the training of Al-
gorithm 1 becomes: O(Nc(2K̄)2d), where Nc = maxi {Nct} is an upper bound
on the number of data samples observed until convergence at each temperature
level, and K̄ =

∑Nλ

i=1 Kt, with Nλ ≤ K̄ ≤ min
{∑Nλ−1

n=0 2n,
∑log2 Kmax

n=0 2n
}

<

NλKmax. The actual value of K̄ depends on the bifurcations occurred as a result
of reaching critical temperatures and the effect of the regularization mechanisms

6 C. N. Mavridis et al.

described above. Note that typically Nc ≪ N as a result of the stochastic ap-
proximation algorithm, and K̄ ≪ NλKmax as a result of the progressive nature
of the algorithm. Prediction scales linearly with O(KNλ

d), with KNλ
≤ Kmax.

Algorithm 1 Progressive Partitioning.
Select a Bregman divergence dϕ
Set stopping criteria Tstop (e.g., Kmax, λmin)
Set convergence parameters: γ, ϵc, ϵn, ϵr, δ
Set stepsizes: {αn}
Initialize: K = 1, λ = 1,

{µ0}, p(µ0) = 1, σ(µ0) = µ0p(µ0)
repeat

Perturb codebook: {µi} ← {µi + δ}
⋃
{µi − δ}

Update K ← 2K, {p(µi)}, {σ(µi)← µip(µi)}
n← 0
repeat

Observe data point x
for i = 1, . . . ,K do

Update:

p(µi|x)←
p(µi)e

− 1−λ
λ

dϕ(x,µi)∑
i p(µi)e

− 1−λ
λ

dϕ(x,µi)

p(µi)← p(µi) + αn [p(µi|x)− p(µi)]

σ(µi)← σ(µi) + αn [xp(µi|x)− σ(µi)]

µi ←
σ(µi)

p(µi)
n← n+ 1

end for
until Convergence: 1−λ

λ
dϕ(µ

n
i , µ

n−1
i) < ϵc, ∀i

Keep effective codevectors:
discard µi if 1−λ

λ
dϕ(µj , µi) < ϵn, ∀i, j, i ̸= j

Remove idle codevectors:
discard µi if p(µi) < ϵr, ∀i

Update K, {p(µi)}, {σ(µi)}
Lower temperature: λ← γλ

until Tstop

3 Learning with Local Models

In this section, we investigate the problem of combined partitioning and function
approximation, where multiple local models are trained, taking advantage of the
differences in the underlying probability distribution of the data space. As a
consequence, this approach can circumvent the use of overly complex learning
models, reduce time, memory, and computational complexity, and give insights
to certain properties of the data space [32].

Explainable Learning with Hierarchical Online Deterministic Annealing 7

Assuming models f̂i(x, θi) ∈ F that are differentiable with respect to a pa-
rameter vector θi ∈ Θ, where Θ is a finite-dimensional vector space, and given
a finite partition set of parameters {Si}K(λ)

i=1 , for K(λ) < ∞, the problem is
formulated as:

min
θi

E
[
1[X∈Si]d

(
f(X), f̂i(X, θi)

)]
, i = 1, . . . ,K(λ). (7)

where d : F × F → [0,∞) is assumed a metric that is differentiable and convex
with respect to the second argument. This is a stochastic optimization problem
that can be solved using stochastic approximation updates. In particular, one
can use stochastic gradient descent:

θi(n+ 1) = θi(n)− β(n)∇θd(f(xn), f̂i(xn, θi(n))) (8)

which is a special case of a stochastic approximation algorithm that, under mild
assumptions, converges almost surely to an asymptotically stable local minimum
of the objective function E

[
1[X∈Si]d̂(f(xn), fi(x, θi))

]
.

However, we are interested in a learning approach that approximates {Si}
and

{
f̂i(x, θi)

}
at the same time, and given the same observations {(xn, f(xn))}

which may be available one at a time (i.e, no dataset is stored in memory a
priori). This is possible because both learning algorithms for {Si} and

{
f̂i(x, θi)

}
independently are stochastic approximation algorithms. According to the theory
of two-timescale stochastic approximation, we can run both learning algorithms
at the same time, but using different stepsize profiles {α(n)} and {β(n)}, such
that α(n)/β(n) → 0. Intuitively, we create a system of two dynamical system
running in different “speed”, meaning that second system, the one with stepsizes
{β(n)}, is updated fast enough that the first system, the one with stepsizes
{α(n)}, can be seen as quasi-static with respect to the second. The following
theorem follows directly from the results of Ch. 6 in [6].

Theorem 2. Let {xn} be a sequence of independent realizations of X, and as-
sume that µi(n) is a sequence updated using the stochastic approximation algo-
rithm in (5) with stepsizes {α(n)} satisfying

∑
n α(n) =∞, and

∑
n α

2(n) <∞.
Then, as long as {β(n)} are designed such that

∑
n β(n) =∞,

∑
n β

2(n) <∞,
and α(n)/β(n)→ 0, the asynchronous updates

θi(n+ 1) = θi(n)− β(n)∇θd(f(xn), f̂i(xn, θi(n))), (9)

for i = argminj dϕ(xn, µj(n)) converges almost surely to a locally asymp-
totically stable solution {θi} of (7), as n → ∞, for Si = {x ∈ S : i =
argminj dϕ(x, µj(∞))}, where µi(∞)) is the asymptotically stable equilibrium
of (5).

3.1 Case of Constant Local Models

In the special case when locally constant models are used, i.e., when f̂(x, θi) =
θi ∈ F, two-timescale updates are not required, and a simpler solution can be

8 C. N. Mavridis et al.

tracked. In particular, we can augment the system (5) with{
σθi(n+ 1) = σθi(n) + α(n) [xnp̂(µi|xn)− σθi(n)]

θi(n) =
σθi

(n)

ρi(n)

(10)

Following the same arguments as in the proof of Theorem 1, it is easy to see
that θi(n) converge almost surely to E

[
1[X∈Si]f(X)

]
as n → ∞ and λ → 0.

This approach is equivalent to a piece-wise constant approximation of f(X).

3.2 Classification as Class-Conditioned Density Estimation

As shown in [27], we can formulate the binary classification problem to the
minimization of F in (1) with a modified average distortion measure given by

dc(x, cx, µ, cµ) =

{
d(x, µ), cx = cµ

0, cx ̸= cµ
(11)

It is easy to see that this particular choice for the distortion measure dc in (11)
transforms the learning rule in (5) to{

ρi(n+ 1) = ρi(n) + β(n) [sip̂(µi|xn)− ρi(n)]

σi(n+ 1) = σi(n) + β(n) [sixnp̂(µi|xn)− σi(n)]
(12)

where si := 1[cµi
=c]. As a result, this is equivalent to estimating strongly con-

sistent class-conditional density estimators, i.e., p̂(x|c = j)→ πjp(x|c = j), a.s.

4 Hierarchical Learning in Multiple Resolutions

In this section, we extend the progressive partitioning algorithm (Alg. 1) of
Section 2, by imposing a tree structure in the construction of the regions {Si}.
This structural constraint reduces the time complexity of the algorithm from
O(K2) to O(k2 + logk K), where K here represents the total number of sets
{Si}Ki=1, and k represents the number of children sub-sets for each parent set
(assumed equal for every parent set) [11].

4.1 Tree-Structured Progressive Partitioning

A tree-structured partition Σ∆ := {Sνi
} is defined by a set of regions Sνi

∈ S,
each represented by a tree node νi, arranged in a tree structure ∆ with a single
root node ν0 such that Sν0 = S. The tree structure ∆ is a special case of a
connected, acyclic directed graph, where each node has a single parent node
(except for the root node) and an arbitrary number of children nodes, that is, ∆
is not restricted to be a binary tree. The set C(νi) represents the nodes {νj} that
are children of νi, while the set P (νj) represents the node νi for which νj ∈ C(νi).

Explainable Learning with Hierarchical Online Deterministic Annealing 9

The level l ≥ 0 of a node νh ∈ ∆ is the length of the path {ν0, . . . , νi, νj , . . . , νh}
leading from the root node ν0 to νh such that νj ∈ C(νi). The terminal nodes
ν̃ := {νi : C(νi) = ∅} are called leaves, and the union of their associated sets will
be denoted S̃ :=

{
S̃j

}
, where |S̃| = K̃ is the number of leaf sets that create

a partition of S, and l̃ := max
{
l : ν

(l)
i ∈ ν̃

}
< ∞ will denote the maximum

depth of the tree. Σ∆ defines a hierarchical partitioning scheme for the domain
S, such that for every node νi ∈ ∆ associated with the region Sνi , its children
nodes {νj ∈ C(νi)} are associated with the regions

{
Sνj

}
that form a partition

of Sνi
. We will use the unique paths from the root node as identification label

for each node, i.e., νj = 0 . . . ij such that ν0 = 0, C(0) = {0i}, C(0i) = {0ij},
and so on. As such, Algorithm 1 can be used recursively to construct a tree-
structured partition Σ∆ as follows: Start with node ν0 = 0 as the only leaf
node. Using observations {xn} (realizations of X ∈ S), apply Algorithm 1 until
a partition {S0j} of S0 = S is constructed. Then starting with w = 0 and for
every observation xn, iterate the process

repeat w ← w′ ∈ C(w) such that xn ∈ Sw′ , until C(w) = ∅, (13)

and apply one stochastic approximation update of Algorithm 1 in Sw. This
asynchronous process can continue until the convergence of all applications of
Alg. 1, when a finite-depth tree-structured partition Σ∆ is constructed such that
for every node w ∈ ∆ with children nodes {wj} ∈ C(w), the regions {Swj} form
a partition of Sw. Training local learning models on ∆ using, e.g., the updates
in (9) results in a learning structure as illustrated in Fig. 1c.

The time complexity of the tree-structured algorithm is significantly reduced.
Let Kmax be the total number of codevectors allowed. Then Alg. 1 has a worst-
case complexity O(Nc(2K̄)2d), for training, where K̄ =

∑log2 Kmax

n=0 2n, while
testing requires O(Kmaxd) (see Section 2.1 for details on the parameters). In a
tree-structured partition Σ∆ of depth l̃, assuming that the number of children
k = |C(νi)| of each node νi is k is the same, and that each region is represented
by roughly the same number of observations N l̃

c, we get k = (Kmax)
1/l̃, and

N l̃
c = Nc/k. Then training requires in the worst-case:

O

(
kl̃ − 1

k(k − 1)
Nc(2k̄)

2d)

)

where k̄ =
∑log2 k

n=0 2n =
∑1/l̃ log2 Kmax

n=0 2n. Prediction requires a forward pass of
the tree, i.e., it scales with O(k logk Kmaxd). In addition, we note that (13) up-
dates the partition {Swj} of each node w asynchronously. As a result, a variable-
rate coding scheme is constructed that depends on the underlying probability
density of the random variable X ∈ S, and often outperforms fixed-rate, full-
search techniques with the same average number of bits per sample.

10 C. N. Mavridis et al.

Algorithm 2 Multi-Resolution Progressive Partitioning

Initialize root node ν0 s.t. Sν0 = S l̃

repeat
Observe data point xl̃ ∈ S l̃

Find leaf node to update:
Set w = ν0
Set resolution l = l̃
while C(w) ̸= ∅ do

w ← v ∈ C(w) such that xl ∈ Sl
v

l← l − 1
end while
Update partition

{
Sl
wj

}
of Sl

w using x and Alg. 1
if Alg. 1 in Sl

w terminates and l > 0 then
Split node w: C(w)←

{
Sl
wj

}
end if

until Stopping criterion

4.2 Multi-Resolution Extension

So far we have modeled the observations as realizations of a random variable
X ∈ S ⊆ Rd. In general, X can be itself a measurable signal X(t) : Rn → S with
finite energy, i.e., X(t) ∈ S ⊆ L2(Rd). We will denote the original space S as
S0. A multi-resolution representation of the signal X(t) consists of a sequence of
projections of X(t) on subspaces

{
Sj
}

such that Sj ⊂ Sj−1, ∀j ∈ N, and ∪∞j=0S
j

is dense in S0 with ∩∞j=0S
j = {0}. There are numerous methods to construct

subspaces
{
Sj
}

with these properties, from the classical wavelet transform [19]
to different dictionary learning approaches [10, 16]. An approach using group-
convolutional wavelet decomposition is discussed in Section 4.3.

We denote by Xr ∈ Sr the projection of X = X0 to the subspace Sr. Given
a multi-resolution representation of X with subspaces

{
S0, S1, S2, . . . , S l̃

}
, we

can extend (13) presented in Section 4.1 such that X l̃−r ∈ S l̃−r is used to train
the nodes of the tree at level r. This idea matches the intuition of using higher-
resolution representation of X for deeper layers of the tree, and the algorithmic
implementation is given in Alg. 2.

4.3 Building Group-Invariant Multi-Resolution Representations

There are numerous methods to construct multi-resolution subspaces
{
Sj
}

with
the properties mentioned in Section 4.2. In this section we briefly mention a
particular approach based on group-convolutional wavelet decomposition that
aligns with the principles of the scattering transform, first introduced in [9].

We start with the standard wavelet transform {WlX(t)}l ∈ Sl of a signal
X(t) ∈ S ⊆ L2(Rd) [19]. The computation of the multi-resolution wavelet repre-
sentation of a signal consists of successive operations of a linear convolution oper-
ator, followed by a downsampling step [21]. As a result, the wavelet transform, is

Explainable Learning with Hierarchical Online Deterministic Annealing 11

stable to small deformations [9]. In addition, the wavelet transform is translation
covariant, that is it commutes with the Lie group of operators {Tc}c∈R such that
TcX(t) = X(t − c), i.e., Wj(TcX) = TcWj(X). In fact, the translation covari-
ance property can be generalized to covariance with respect to the action of an
arbitrary compact Lie group G by replacing for the group-convolution operation
(f ∗ h)(x) =

∫
G
f(g)h(g−1x)dr, where dr is the Haar measure of G [20].

To induce local invariance (up to a scale 2J for some J > 0) with respect to
G, it is sufficient to cascade the wavelet transform with a non-linear operation
ρWjX = ∥WjX∥1, and a locally averaging integral operation which can be
modeled as a convolution with a low-pass filter localized in a spatial window
scaled at 2J [9]. This is called a scattering transform and its implementation
is based on a complex-valued convolutional neural network whose filters are
fixed wavelets and ρ is a complex modulus operator as described above [1].
This structure is similar to deep convolutional neural networks [17, 22], where
successive operations of a linear convolutional operator, a nonlinear mapping
(often a rectifying function, e.g., ReLu), and a down-sampling step (e.g., max-
pooling), are used to produce the input for the next stage of the architecture
[2, 9, 21].

5 Experimental Evaluation and Discussion

We illustrate the properties and evaluate the performance of the proposed learn-
ing algorithm in 2D classification problem with class-conditional distributions
given by a mixture of 2D Gaussians3. The evolution of Alg. 1 is shown in Fig.
2. The temperature level (we use T instead of λ to stress the connection to
the temperature level in annealing optimization), the average distortion of the
model, the number of codevectors (neurons) used, the number of observations
(data samples) used for convergence, as well as the overall time, are shown. This
process showcases the bifurcation phenomenon and the performance-complexity
trade-off described in Section 2.

In Fig. 3, we illustrate the evolution of the tree-structured approach. There
are two notable comments on the behavior of this approach compared to the
original. First, the time complexity is considerably improved (see Section 4), and
this results in a drastic difference in the running time of the learning algorithm.
In particular, the tree-structured approach achieves a testing error of e = 99.8%
in t = 0.4s, while the original approach achieves a testing error of e = 99.8% in
t = 10.4s. Secondly, the number of codevectors used is drastically reduced, and
the codevectors tend to exist in the boundaries of the Bayes decision surface,
instead of populating areas where the decision surface does not fluctuate much.

Finally, the effect of using multiple resolutions as described in Section 4.2, is
depicted in Fig. 4 for the same problem as in Fig. 2 and 3. For better visualiza-
tion, we assume that the low-resolution features, with respect to which the first
layer of the tree is computed, are the projections of the two-dimensional data
3 The open-source code is publicly available at https://github.com/
MavridisChristos/OnlineDeterministicAnnealing.

https://github.com/MavridisChristos/OnlineDeterministicAnnealing
https://github.com/MavridisChristos/OnlineDeterministicAnnealing

12 C. N. Mavridis et al.

(a) Evolution of the algorithm in the data space.

(b) Performance curves.

Fig. 2: Performance curves and data space evolution of the proposed algorithm
applied to a classification problem with underlying Gaussian distributions.

(a) Evolution of the algorithm in the data space. (b) Performance curves.

Fig. 3: Performance curves and data space evolution of the proposed tree-
structured algorithm (three layers) applied to a classification problem with un-
derlying Gaussian distributions.

in an one-dimensional space (line). The second layer of the tree is trained using
the high-resolution features, i.e., the full knowledge of both coordinates of the
data. Notice that this process will converge to a consistent learning algorithm,
as long as the multi-resolution representation used complies with the properties
mentioned in Section 4.2, and the last layer of the tree uses the full information
of the input data.

5.1 Tree-Structured Partition, Localization, and Explainability in
Machine Learning

We emphasize the advantage of using a tree-structured learning module in the
localization properties which allow for an understanding of the input space, in ac-
cordance to the principles of the recently introduced class of explainable learning
models [24, 31]. The Voronoi regions shrink geometrically, and allow for the use
of local models, which is especially important in high-dimensional spaces. Un-
like most learning models, it is possible to locate the area of the data space that

Explainable Learning with Hierarchical Online Deterministic Annealing 13

(a) Convergence of
first layer with low-
resolution features.

(b) Convergence of sec-
ond layer with high-
resolution features.

(c) Performance curves.

Fig. 4: Performance curves and data space evolution of the proposed multi-
resolution algorithm (two layers) applied to a classification problem with un-
derlying Gaussian distributions.

presents the highest error rate and selectively split it by using local applications
of Alg. 1 (ODA). This process can be iterated until the desired error rate (or av-
erage distortion) is achieved. This is similar to an often over-fitted classification
and regression tree (CART) [8]. However, over-fitting on the training dataset
often adversely affects the generalization properties of the model, the perfor-
mance on the testing dataset, and the robustness against adversarial attacks.
Therefore, the progressive process of ODA becomes important in establishing a
robust way to control the trade-off between performance and complexity, before
you reach that limit. Finally, an important question in tree-structured learning
models is the question of which cell to split next. An exhaustive search in the
entire tree to find the node that presents the largest error rate is possible but
is often not desired due to the large computational overhead. This is automat-
ically circumvented by the proposed multi-resolution ODA approach (Alg. 2)
as it asynchronously updates all cells depending on the sequence of the online
observations. As a result, the regions of the data space that are more densely
populated with data samples are trained first, which results in a higher percent-
age of performance increase per cell split. We stress that this property makes
the proposed algorithm completely dataset-agnostic, in the sense that it does
not require the knowledge of a training dataset a priori. Instead operates com-
pletely online, i.e., using one observation at a time to update its knowledge base
(partition structure and local learning models) [23,28,30].

6 Conclusion

We introduced a hierarchical learning algorithm based on the principles of online
deterministic annealing. The learning architecture simulates an annealing pro-
cess and defines a heuristic method to progressively construct a tree-structured
partition of a possibly multi-resolution data space, which can be used in con-
junction with general learning algorithms to train local models. The structured

14 C. N. Mavridis et al.

partitioning of the input space provides explainability, and makes the learn-
ing architecture a suitable candidate for transfer learning applications. Finally,
the use of online gradient-free training rule based on stochastic approximation
updates allows for the use of the proposed method for inference, control, and
reinforcement learning applications.

References

1. Andreux, M., Angles, T., Exarchakis, G., Leonarduzzi, R., Rochette, G., Thiry, L.,
Zarka, J., Mallat, S., Andén, J., Belilovsky, E., Bruna, J., Lostanlen, V., Hirn, M.J.,
Oyallon, E., Zhang, S., Cella, C., Eickenberg, M.: Kymatio: Scattering transforms
in python (2019)

2. Anselmi, F., Rosasco, L., Tan, C., Poggio, T.: Deep convolutional networks are
hierarchical kernel machines. arXiv preprint arXiv:1508.01084 (2015)

3. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with bregman diver-
gences. Journal of machine learning research 6(Oct), 1705–1749 (2005)

4. Bennett, K.P., Parrado-Hernández, E.: The interplay of optimization and machine
learning research. The Journal of Machine Learning Research 7, 1265–1281 (2006)

5. Biehl, M., Hammer, B., Villmann, T.: Prototype-based models in machine learning.
Wiley Interdisciplinary Reviews: Cognitive Science 7(2), 92–111 (2016)

6. Borkar, V.S.: Stochastic approximation with two time scales. Systems & Control
Letters 29(5), 291–294 (1997)

7. Borkar, V.S.: Stochastic approximation: a dynamical systems viewpoint, vol. 48.
Springer (2009)

8. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
9. Bruna, J., Mallat, S.: Invariant scattering convolution networks. IEEE transactions

on pattern analysis and machine intelligence 35(8), 1872–1886 (2013)
10. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit.

SIAM review 43(1), 129–159 (2001)
11. Gray, R.M.: Vector quantization. Readings in speech recognition 1(2), 75–100

(1990)
12. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief

nets. Neural computation 18(7), 1527–1554 (2006)
13. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine

learning: An introduction to concepts and methods. Machine Learning 110, 457–
506 (2021)

14. Kohonen, T.: Learning Vector Quantization, pp. 175–189. Springer Berlin Heidel-
berg, Berlin, Heidelberg (1995)

15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

16. LeCun, Y.: The next frontier in ai: Unsupervised learning.
https://www.youtube.com/watch?v=IbjF5VjniVE (2016)

17. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444
(2015)

18. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations. In: Proceedings
of the 26th annual international conference on machine learning. pp. 609–616 (2009)

19. Mallat, S.: A wavelet tour of signal processing. Elsevier (1999)

Explainable Learning with Hierarchical Online Deterministic Annealing 15

20. Mallat, S.: Group invariant scattering. Communications on Pure and Applied
Mathematics 65(10), 1331–1398 (2012)

21. Mallat, S.: Understanding deep convolutional networks. Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering Sciences
374(2065), 20150203 (2016)

22. Mavridis, C., Baras, J.: Multi-resolution online deterministic annealing: A hier-
archical and progressive learning architecture. arXiv preprint arXiv:2212.08189
(2022)

23. Mavridis, C., Baras, J.S.: Annealing optimization for progressive learning with
stochastic approximation. IEEE Transactions on Automatic Control 68(5), 2862–
2874 (2023)

24. Mavridis, C., Noorani, E., Baras, J.S.: Risk sensitivity and entropy regularization
in prototype-based learning. In: 2022 30th Mediterranean Conference on Control
and Automation (MED). pp. 194–199. IEEE (2022)

25. Mavridis, C.N., Baras, J.S.: Convergence of stochastic vector quantization and
learning vector quantization with bregman divergences. IFAC-PapersOnLine 53(2)
(2020)

26. Mavridis, C.N., Baras, J.S.: Progressive graph partitioning based on information
diffusion. In: IEEE Conference on Decision and Control. pp. 37–42 (2021)

27. Mavridis, C.N., Baras, J.S.: Online deterministic annealing for classification and
clustering. IEEE Transactions on Neural Networks and Learning Systems 34(10),
7125–7134 (2023). https://doi.org/10.1109/TNNLS.2021.3138676

28. Mavridis, C.N., Kanellopoulos, A., Vamvoudakis, K., Baras, J.S., Johansson, K.H.:
Attack identification for cyber-physical security in dynamic games under cognitive
hierarchy. IFAC-PapersOnLine (2023)

29. Mavridis, C.N., Kontoudis, G.P., Baras, J.S.: Sparse gaussian process regression us-
ing progressively growing learning representations. In: 2022 IEEE 61st Conference
on Decision and Control (CDC). pp. 1454–1459. IEEE (2022)

30. Mavridis, C.N., Suriyarachchi, N., Baras, J.S.: Detection of dynamically changing
leaders in complex swarms from observed dynamic data. In: International Confer-
ence on Decision and Game Theory for Security. pp. 223–240. Springer (2020)

31. Milani, S., Topin, N., Veloso, M., Fang, F.: A survey of explainable reinforcement
learning. arXiv preprint arXiv:2202.08434 (2022)

32. Rüping, S.: Learning with local models. In: Morik, K., Boulicaut, J.F., Siebes, A.
(eds.) Local Pattern Detection. pp. 153–170. Springer Berlin Heidelberg, Berlin,
Heidelberg (2005)

33. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep
learning in nlp. arXiv preprint arXiv:1906.02243 (2019)

34. Thompson, N.C., Greenewald, K., Lee, K., Manso, G.F.: The computational limits
of deep learning. arXiv preprint arXiv:2007.05558 (2020)

https://doi.org/10.1109/TNNLS.2021.3138676
https://doi.org/10.1109/TNNLS.2021.3138676

	Explainable Learning with Hierarchical Online Deterministic Annealing

