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Learning Swarm Interaction Dynamics From
Density Evolution
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Abstract—In this article, we consider the problem of un-
derstanding the coordinated movements of biological or
artificial swarms. In this regard, we propose a learning
scheme to estimate the coordination laws of the interacting
agents from observations of the swarm’s density over time.
We describe the dynamics of the swarm based on pairwise
interactions according to a Cucker–Smale flocking model,
and express the swarm’s density evolution as the solu-
tion to a system of mean-field hydrodynamic equations.
We propose a new family of parametric functions to model
the pairwise interactions, which allows for the mean-field
macroscopic system of integro-differential equations to be
efficiently solved as an augmented system of partial dif-
ferential equations. Finally, we incorporate the augmented
system in an iterative optimization scheme to learn the
dynamics of the interacting agents from observations of
the swarm’s density evolution over time. The results of this
work can offer an alternative approach to study how animal
flocks coordinate, create new control schemes for large
networked systems, and serve as a central part of defense
mechanisms against adversarial drone attacks.

Index Terms—Biological networks, learning, networks of
autonomous agents, swarm interaction dynamics.

I. INTRODUCTION

THE highly coordinated movements of animal flocks are
among the most fascinating phenomena to be found in

nature, and understanding their dynamics and coordination laws
has been the research focus for many scientists over the last
decades [1], [2], [3], [4], [5], [6]. Extracting the laws of in-
teraction between agents of general networked systems finds
applications in a wide range of fields, from power systems and
chemical reaction networks, to social networks and unmanned
aerial vehicle(s) (UAV) swarms [3], [4], [5], [7], [8], [9]. Statisti-
cal [10] and model-based [2], [3], [7], [11] learning approaches
have been used to learn the interaction rules between agents.
There are generally two broad approaches in modeling the un-
derlying dynamics of ensembles of self-organizing agents: The
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microscopic particle models, described by ordinary or stochastic
differential equations, and the macroscopic continuum models,
described by partial differential equations (PDEs). Agent-based
models assume behavioral rules at the individual level, such
as velocity alignment, attraction, and repulsion [2], [3], [4], [5],
while macroscopic models, consider large number of interacting
agents, approaching the mean-field limit. These models typically
consist of hydrodynamic PDEs defined on macroscopic quanti-
ties, such as the swarm’s density [12], [13], [14], and have been
studied for the analysis and control of artificial swarms, mainly
in robotic applications [15], [16], [17].

Particle models have been mainly used in numerical simu-
lations and learning methodologies [7], [11], [18]. Recently,
Mao et al. in [11] modeled the interactions with respect to a
fractional differential system of equations, and Matei et al. in [7]
proposed an energy-based approach by modeling the network
as a port-Hamiltonian system [19]. However, useful real-life
data of particle trajectories are difficult to extract and may
require substantial memory and computation resources [5], [9].
The experimental measurements, which usually involve digital
imaging or high-resolution GPS devices, are difficult to acquire
and are subject to artificially created noise originating from both
the sensors and the processing algorithms. In [5], for example,
stereometric and computer vision techniques have been used to
measure long-time and long-distance 3-D position trajectories of
starling flocks, and in [9], GPS devices were installed to homing
pigeons flying in small flocks of no more than 13 individuals.

On the other hand, useful approximations of the ensemble’s
density evolution can be easier to extract, often by applying
simple morphological operators on vision-based recordings. For
this reason, we believe that developing learning algorithms based
on the macroscopic quantities can play a crucial role in the
analysis of collective motion, and only remains inhibited due to
computational expense; the flocking dynamics can be nonlocal
as well as nonlinear [13], which results in a costly computation of
the solution of the corresponding hydrodynamic equations [11],
[20].

Contribution: In this work, we introduce a modified Cucker–
Smale model of nonlocal particle interaction for velocity con-
sensus [3], [21] to efficiently solve the macroscopic hydrody-
namic equations. We propose a family of parametric interaction
functions, which are shown to correspond to Green’s functions
associated with an appropriately defined differential operator.
This allows for the transformation of the macroscopic hydrody-
namic integro-differential equations into an augmented system
of PDEs, which, in turn, results in a speed-up in the computation
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of the nonlocal interaction terms. We investigate the conditions
under which time-asymptotic flocking is achieved, and utilize
the computational advantages of the proposed methodology
to construct an iterative optimization algorithm to learn the
interaction function based on observations of the particle density
evolution. Finally, we also investigate the advantages of incor-
porating the proposed interaction function model in learning
algorithms based on particle trajectories (microscopic models).
The results of this work can be used to model and understand
biological and artificial flocks with applications in the control
of large networked systems and artificial robotic swarms, and in
defensive mechanisms against adversarial swarm attacks.

II. MATHEMATICAL MODELS AND NOTATION

In this section, we introduce the notation that will be followed
throughout the manuscript, define time-asymptotic flocking and
the Cucker–Smale particle dynamics, and derive the mean-field
macroscopic equations.

A. Cucker–Smale Model

Consider an interacting system G of N identical parti-
cles (representing autonomous agents) with unit mass in Rd,
d ∈ {1, 2, 3}. Let xi(t), vi(t) ∈ Rd represent the position and
velocity of the ith-particle at each time t ≥ 0, respectively,
for 1 ≤ i ≤ N . Then, the general Cucker–Smale system [3] is
a dynamical system of (2Nd) ordinary differential equations
(ODEs): ⎧⎨

⎩
dxi

dt = vi

dvi
dt = 1

N

∑N
j=1 ψ(xj , xi)(vj − vi)

(1)

where xi(0) and vi(0) are given for all i = 1, . . . , N , and
ψ : Rd × Rd → R represents the interaction function between
each pair of particles. We define the center of mass system
(xc, vc) of G = {(xi, vi)}Ni=1 as

xc =
1
N

N∑
i=1

xi, vc =
1
N

N∑
i=1

vi. (2)

We are interested in symmetric interaction functions ψ(x, s) =
ψ(s, x), in which case system (1) implies

dxc
dt

= vc,
dvc
dt

= 0 (3)

which yields a unique solution

xc(t) = xc(0) + tvc(0), t ≥ 0. (4)

Under additional assumptions on ψ (see Section III-A), sys-
tem (1) can be shown to converge to a velocity consensus,
while preserving spatial coherence, a property that is known
as time-asymptotic flocking, defined as follows:

Definition 1 (Time-Asymptotic Flocking): An N−body in-
teracting system G = {(xi, vi)}Ni=1 exhibits time-asymptotic
flocking with bounded fluctuation if and only if the following
two relations hold.

1) (Velocity alignment): The velocity fluctuations approach
zero asymptotically, i.e.,

lim
t→∞

N∑
i=1

‖vi(t)− vc(t)‖2 = 0.

2) (Spatial coherence): The position fluctuations are uni-
formly bounded, i.e., for some 0 < Λ <∞

sup
t≥0

‖xi(t)− xc(t)‖ < Λ ∀i ∈ {1, . . . , N} .

Throughout this article, we will be investigating flocking
behaviors and will be working with the fluctuation variables
around the center of mass system, defined as

(x̂i, v̂i) := (xi − xc, vi − vc) (5)

which can be shown to satisfy the same Cucker–Smale dynamics
described in (1). We will take advantage of the spatial coherence
of the flocking behavior, and define the position variables x̂i in a
compact support D := {x ∈ Rd : ‖x‖ < L/2} for some finite
L > 0 and for all i ∈ {1, . . . , N}, with ‖ · ‖ representing the
standard Euclidean norm in Rd. The set D is time dependent
and represents a subset of Rd centered at the center of mass
of the swarm xc(t), t ≥ 0, outside of which, the density of the
swarm is considered negligible. We note that time-dependent
transformation (5) only requires the knowledge of the initial
conditions xi(0) and vi(0), i = 1, . . . , N .

B. Mean-Field Limit

When the number of agents N becomes large, the use of
continuum models for the evolution of a density of individuals
becomes essential. In the following, we introduce a continuum
model based on the hydrodynamic description derived by study-
ing the mean-field particle limit following the Cucker–Smale
model (1).

Consider the joint probability triple of the entire particle sys-
tem {Ω := R2Nd,B(Ω), Pxv}, the state space for each particle
{R2d,B(R2d)} and define the empirical (random) probability
measure FNxv : Ω× [t0, tf ]× B(R2d) → [0, 1] such that

FNxv(t, A) :=
1

N

N∑
i=1

IA((xi(t), vi(t))) (6)

where IA(·) is the indicator function, A ∈ B(R2d). Some au-
thors use Dirac measures (not the Dirac delta function) in this
definition. FNxv is a random measure which is purely atomic. Us-
ing arguments originally due to McKean and Vlasov [22], [23], it
can be shown that there exists a deterministic and continuousF ∗

xv

such thatFNxv
a.e.→ F ∗

xv in the weak sense, and, using Ito’s lemma,
that the joint probability density f ∗xv : [t0, tf ]× R2d → R+

0 as-
sociated with this measure, evolves according to the forward
Kolmogorov equation on [t0, tf ]× R2d:{

∂tf
∗
xv +∇x · (vf ∗xv) +∇v · (Ff ∗xv) = 0

F(t, x, v) :=
∫

R2d ψ(x, s)(w − v)f ∗xv(t, s, w)dsdw.
(7)
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We define the marginal probability density ρ : [t0, tf ]×D →
R+

0 (henceforth referred to only as density) as

ρ(t, x) :=

∫
Rd

f ∗xv(t, x, v)dv (8)

and the momentum density m : [t0, tf ]×D → Rd and bulk
velocity u : [t0, tf ]×D → Rd as

m(t, x) :=

∫
Rd

vf ∗xv(t, x, v)dv := ρ(t, x)u(t, x) (9)

where D ⊆ Rd. It is additionally assumed that ρ,m, u are
compactly supported. Substituting in (7), we obtain the (d+ 1)
compressible Euler equations on [t0, tf ]×D (see also [12]):{

∂tρ+∇x ·m = 0

∂tm+∇x · (ρ−1mmT ) = ρLψm−mLψρ
(10)

where

Lψφ(t, x) =
∫
D

ψ(x, s)φ(t, s)ds (11)

is an integral transform with kernel ψ : D ×D → R.

III. SCREENED POISSON MEDIATED FLOCKING

The integral transforms in the right-hand side of (10), which
originate from the nonlocal interaction terms in the Cucker–
Smale model, make the compressible Euler equation (10) a sys-
tem of partial integro-differential equations, which is extremely
challenging to solve. We approach the solution of system (10)
by transforming it into an augmented system of PDEs, in order
to use existing numerical methods to solve it.

Suppose that, by construction, the interaction function ψ is a
Green’s function associated with some linear partial differential
operator Lx : L2(D;R) → L2(D;R), such that

Lxy(t, x) = φ(t, x) (12)

implies

y(t, x) =

∫
D

ψ(x, s)φ(t, s)ds. (13)

Then, system (10) is equivalent with the augmented system of
(2d+ 2) partial differential equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tρ+∇x ·m = 0

Lxz = ρ

Lxy = m

∂tm+∇x · (ρ−1mmT ) = ρy − zm.

(14)

For the global regularity of system (14), one can refer to [13]
and the references therein. A classical example for Lx is the
operator associated with the Poisson equation that arises in self-
gravitational hydrodynamics [24]. However, in order to alleviate
the computational bottleneck introduced by the nonlocal integral
terms in (10), the operator Lx needs to be defined in a way such
that the following conditions hold.

1) The newly introduced subsystem

Lxz = ρ

Lxy = m

can be efficiently solved with numerical methods, which
is the case, for example, if Lx is an elliptic operator.

2) The Green’s function ψ defined in (13) retains the neces-
sary properties of an interaction function that can drive the
Cucker–Smale model (1) to asymptotic flocking behavior.

3) Lx, and consequently ψ, depend on a set of parameters
that make ψ appropriate to model different interaction
function profiles, depending on the behavior of the swarm.

With this in mind, we propose Lx to be the parameterized
screened Poisson partial differential operator

Lx := − 1

2k
(∂2x − λ2) (15)

defined in the domain D := {x ∈ Rd : ‖x‖ < L/2} with ho-
mogeneous Dirichlet boundary conditions.

Remark 1: We note that the choice of the proposed operator
Lx in (15) is not necessarily unique. However, to our knowledge,
there is no formal method to construct an operator Lx, and its
associated Green’s function ψ, that satisfy the conditions 1), 2),
and 3) as described above.

To highlight the importance of conditions 1), 2), and 3), we
stress that they allow for the system of partial integro-differential
equation (10) to be solved faster, as an augmented system of
PDEs. This is in contrast to the use of a standard kernel, e.g., the
fractional Laplacian used in [11], that results in solving a system
of fractional partial integro-differential equations. In the rest of
this section, we will present an analysis of the proposed family
of Green’s functions as interaction functions of a Cucker–Smale
model (1), in the 1-D case (d = 1), which, in Section IV will be
generalized to higher dimensions. When d = 1, system (14) can
be compactly written as{

∂tU + ∂xF (U) = S(Y, U)

LxY = U
(16)

where U := [ρ,m]T , F := [m,m2ρ−1]T , S := [0, ρy − zm]T ,
and Y := [z, y]T . The Green’s function ψ associated with the
boundary value problem (BVP) introduced in (15) can be ana-
lytically computed as (see Appendix I)

ψ(x, s) =

{
Kσp(s)σm(x) s ≤ x

Kσm(s)σp(x) s > x
(17)

where

K = −k
λ

1

eλL − e−λL

σp(z) = 2 sinh (λ(z + L/2))

σm(z) = 2 sinh (λ(z − L/2)) . (18)

One of the parameters of the interaction function ψ in (17),
which affects the flocking behavior of the system G, is the size
L of the bounded domainD in which it is defined. The effect of
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Fig. 1. (Left) Illustration of ψ(x, ·) (17) for different values of x, and for
λ = 1, k = 4 on [−π, π]. The function ψ̂(x, s) = k

λ
e−λ‖x−s‖, is depicted

in dashed lines. (Right) The effect of the parameters k, and λ on the
profile of the interaction function ψ. The function ψ̂ is depicted in dashed
lines. Here, x = 0.

the boundedness of the domain is illustrated in Fig. 1, where, for
different fixed values of x, ψ(x, s) is compared to the function

ψ̂(x, s) =
k

λ
e−λ‖x−s‖ (19)

which is the Green’s function corresponding to Lx defined in
an infinite domain. We can interpret this effect as a tendency to
avoid the spread of the swarm in large distances with respect to
the swarm’s center of mass at each time step.

The parameters k and λ control the profile of the interaction
function ψ by affecting the influence factor of each agent to its
neighborhood, essentially changing the communication radius
of each agent. This effect is similar to the parametersK, γ in the
original proposed interaction functionψCS(x, s) = K

(1+‖x−s‖2)γ
from Cucker and Smale [3]. As a result, a wide range of flocking
behaviors can be modeled using the Cucker–Smale model and
the proposed parametric interaction function ψ.

A. Asymptotic Flocking

In this section, we investigate the sufficient conditions on the
initial conditionsxi(0),vi(0), i = 1, . . . , N , and the sizeLof the
domain, such that, under the new interaction function (17), (18),
the solution {(xi(t), vi(t))}Ni=1, t ≥ 0, of system (1) satisfies the
flocking conditions of Definition 2. We note that these results
refer to the case d = 1. For higher dimensions, (15) results in
singular kernels that, under mild assumptions, have been shown
to result in flocking behavior (Section IV).

We define x̂ := (x̂1, . . . , x̂N ), v̂ := (v̂1, . . . , v̂N ) ∈ RNd,
|x̂| = ( 1N

∑N
i=1 ‖x̂i‖2)1/2, and |v̂| = ( 1N

∑N
i=1 ‖v̂i‖2)1/2,

where‖ · ‖ represents the standard Euclidean norm in Rd. Notice
that | · | is equivalent to the Euclidean norm in RNd, which we as-
sociate with the inner product< ·, · > such that< x, x >= |x|2.
Then, in the case of d = 1, the following theorem holds:

Theorem 1: If 1
2 max1≤i,j≤N ‖x̂i(0)− x̂j(0)‖ < x̂M for

some x̂M < L
4 , where L defines the domain D in (15), and

|v̂0| <
∫ x̂M

|x̂0|
ψ(−2x̂M , λs)ds

for some λ > 0, then the solution {(xi(t), vi(t))}Ni=1, t ≥ 0, of
system (1) satisfies the flocking conditions of Definition 2.

Proof: The result follows by showing that the solution
(|x̂(t)|, |v̂(t)|) satisfies the system of dissipative differential
inequalities

d|x̂|
dt

≤ |v̂|, d|v̂|
dt

≤ −φ(|x̂|)|v̂|.

We first notice that, from the Cauchy–Schwarz inequality

d|x̂|2
dt

=
2
N <

dx̂

dt
, x̂ >=

2
N < v̂, x̂ >≤ 2|x̂||v̂|. (20)

Because d|x̂|2
dt = 2|x̂|d|x̂|dt , this implies that

d|x̂|
dt

≤ |v̂|. (21)

Now we have assumed that for the initial conditions {x̂i(0)},
L, which is a design parameter, is large enough such that there
exists an x̂M ∈ [0, L4 ) for which

|x̂(0)| < x̂M (22)

since |x̂| ≤ 1/2max1≤i,j≤N ‖x̂i − x̂j‖ [25]. From the definition
of the ψ function in (17) and (18), it follows that for |x̂| ≤ x̂M ,
there exist some λ > 0 such that λ|x̂| ≥ max1≤i,j≤N ‖x̂i − x̂j‖
and

ψ(xj , xi) ≥ ψ(−2x̂M , ‖x̂j − x̂i‖)
≥ ψ(−2x̂M , λ|x̂|)
≥ ψ(−2x̂M , 2x̂M ). (23)

This implies that

d|v̂|2
dt

= − 1

N2

∑
1≤i,j≤N

ψ(x̂j , x̂i)‖v̂j − v̂i‖2

≤ − 1

N2
ψ(−2x̂M , λ|x̂|)

∑
1≤i,j≤N

‖v̂j − v̂i‖2

(∗)
= −2ψ(−2x̂M , λ|x̂|)|v̂|2 (24)

and, consequently

d|v̂|
dt

≤ −ψ(−2x̂M , λ|x̂|)|v̂| := −φ(|x̂|)|v̂|. (25)

In step (∗), we have used the fact that

∑
1≤i,j≤N

‖v̂j − v̂i‖2 = 2N
N∑
i=1

‖v̂i‖2 − 2 <
N∑
i=1

v̂i,
N∑
j=1

v̂j

> = 2N2|v̂|2

since
∑N
i=1 v̂i(t) = 0, t ≥ 0. Next, we notice that the Lyapunov

function

V (|x|, |v|) := |v̂|+
∫ |x̂|

α

φ(s)ds, α ≥ 0 (26)
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is nonincreasing along the solutions of (|x̂(t)|, |v̂(t)|) of the
system of dissipative differential inequalities (21) and (25), since

d

dt
V (|x̂|, |v̂|) = d|v̂|

dt
+ φ(|x̂|)d|x̂|

dt

≤ φ(|x̂|)
(
−|v|+ d|x̂|

dt

)

≤ 0 (27)

which implies that

|v̂(t)|+
∫ |x̂|

|x̂0|
φ(s)ds ≤ |v̂(0)| (28)

and

|x̂| ≤ x̂M (29)

as long as |x̂0| ≤ x̂M . This means that max1≤i,j≤N ‖x̂i −
x̂j‖ ≤ λx̂M and the spatial coherence requirement of Definition
2 is satisfied for some Λ > 0.

Regarding the velocity consensus, we have assumed that the
initial velocity |v̂(0)| satisfies

|v̂(0)| <
∫ x̂M

|x̂(0)|
φ(s)ds (30)

and, since φ is nonnegative for |x̂(t)| ≤ x̂M , there exists a x̄ ∈
[|x̂(0)|, x̂M ] for which

|v̂(0)| =
∫ x̄

|x̂(0)|
φ(s)ds (31)

Suppose there exists a t∗ ≥ 0, such that x̂∗ := |x̂(t∗)| ∈ (x̄, x̂M ].
Then ∫ x̂∗

|x̂(0)|
φ(s)ds > |v(0)| (32)

which contradicts (28). Therefore, from (25) and the Grönwall–
Bellman inequality

|v̂(t)| ≤ |v̂(0)|e−φ(x̄)t, t ≥ 0 (33)

i.e., the flocking conditions of Definition 2 are satisfied. �
We note that if the conditions of Theorem 1 do not hold,

then flocking is possible but not guaranteed. In [21], similar
conditions and their effect on the flocking behavior of the swarm
are investigated.

B. Conservation of Mass and Momentum

Next, we show that, in system (16) with the operator Lx as
defined in (15), mass and momentum are conserved.

Lemma 2: The operator Lx (15) is self-adjoint and invertible,
and therefore, has a self-adjoint inverse L−1

x .
Proof: Self-adjointness of the inverse follows immediately

from self-adjointness ofLx and the existence of the inverse [26].
It is clear that Lx has an inverse since the Green’s function
is nontrivial as given by its sine series. Self-adjointness of Lx
follows as a direct application of integration by parts and Green’s
second identity [27]. �

Proposition 1: If Y ∈ C∞
R,C(D), then mass and momentum

are conserved, i.e.,

d

dt

∫
D

Udx =

∫
D

Sdx = 0. (34)

Proof: We obtain (34) by simply integrating the balance laws
in (16) over D and apply the Leibniz rule. The conclusion
follows directly from the self-adjointness of the inverse proved
in Lemma 1. �

C. Computational Methods

Adopting the proposed interaction function form (17), (18)
results in the system of PDEs (16). We describe here the com-
putational methods used to efficiently solve (16) and compute
the macroscopic quantities, i.e., the momentum and density.

1) Hyperbolic Solver: To solve the hyperbolic system of
(16), we apply the finite volume method [28]. We define the
sequence of points xs = {x1, . . ., xi, . . ., xNs

}, which are the
centers of the cells Ii := [xi− 1

2
, xi+ 1

2
), and average the PDE

over these cells, which gives

1

λ(Ii)

d

dt

∫
Ii

Udx = − 1

λ(Ii)

∫
Ii

∂xFdx+
1

λ(Ii)

∫
Ii

Sdx

(35)
where λ(·) is the Lebesgue measure. Assuming these are identi-
cal, such thatΔx := λ(Ii)∀i, we can make use of the divergence
theorem, and replace the integrals of U,F, S with their cell-
averages, i.e., their midpoint values Ū , F̄ , S̄, in order to obtain
semidiscrete scheme

d

dt
Ūi = − 1

Δx
(F̄i+ 1

2
− F̄i− 1

2
) + S̄i (36)

where Ūi := Ū(xi), F̄i := F̄ (xi), S̄ := S̄(xi). For the fluxes,
we assume piecewise linearity and use the Kurganov–Tadmor
flux [29] given by

F̄i+ 1
2
:=

1

2

[
F+
i+ 1

2

+ F−
i+ 1

2

−max± {|u±
i+ 1

2

|}
(
U+
i+ 1

2

− U−
i+ 1

2

)]

U+
i+ 1

2

:= Ui+1 − Δx

2
minmod

(
Ui+2 − Ui+1

Δx
,
Ui+1 − Ui

Δx

)

U−
i+ 1

2

:= Ui +
Δx

2
minmod

(
Ui+1 − Ui

Δx
,
Ui − Ui−1

Δx

)
(37)

where minmod(a, b) := 1
2 (sign(a) + sign(b))min(|a|, |b|).

2) Elliptic Solver: To solve the elliptic equations of (16),
we employ spectral methods. Noting that a basis for the space
ofL2((0, L);R) functions with zero boundary conditions (BCs)
is the sequence {bn(x) := sin nπx

L }n∈N , we propose candidate
solutions to the elliptic BVP for fixed t as Fourier sine series

φ(x, t) =

∞∑
n=1

φ̂n(t)bn(x
′) (38)

where x′(x) = x+ L
2 Now, we apply the operator Lx to φ,

which yields
∞∑
n=1

1

2k
(μn + λ2)φn(t)bn(x

′) = q(x,′ t) (39)
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Fig. 2. Computation times for the nonlocal terms of (10). (Left) One di-
mension. (Right) Two dimensions. The methods are comparable for very
coarse grids, but spectral methods rapidly become faster as more cells
are added. The number of cells scales quadratically with the domain
size.

where μn := (nπL )2 are the eigenvalues of ∂2x(·) with Dirichlet
BCs. Now, let q̂n(t) denote the nth Fourier sine coefficient for
q(x, t). Considering an approximation to φ with Ns harmonics
corresponding to the same Ns as in the hyperbolic solver, we
obtain the semidiscrete spectral method

φ̂n(t) =
2kq̂n(t)
μn + λ2

, 1 ≤ n ≤ Ns. (40)

We implement this spectral method using discrete sine transform
(DST) II in the forward direction and sine transform III in the
backward direction to obtain the approximation of φ from its
sine coefficients. The spectral method is converted into a fully
discrete scheme according to the temporal discretization of the
semidiscrete scheme of the hyperbolic solver.

Remark 2: We note that, in 1-D, the computation time of using
a direct convolution sum (parallelized) to compute the integral
term of the original system (10) has complexity O(N2

s ) (where
Ns is the number of cells), since a sum is required for each
point on the line where the convolution is to be approximated.
In contrast, the fast Fourier transform (FFT)-based elliptic solver
has complexityO(Ns log(Ns) +Ns), where the addedNs cor-
responds to multiplication of coefficients. The difference be-
comes even more significant in higher dimensions, as explained
in Section IV. Fig. 2 presents a quantitative comparison.

IV. HIGHER DIMENSIONS

The methodology outlined above is scalable and can be gen-
eralized to higher dimensions, as shown next.

A. Screened Poisson Mediated Flocking in Radially
Symmetric Domain

It seems natural for the interaction function ψ to be radially
symmetric, which suggests that the domainD has radial symme-
try as well. In higher dimensions, i.e., for d = 2, 3, this results in
singular kernels ψ [30]. Singular kernels have been extensively
studied in the literature and, under mild assumptions in the initial
conditions, have been shown to result in flocking behavior while,
at the same time, avoiding collisions [30]. In this case, we have
the BVP of the augmented system of PDEs (14) defined in the
radially symmetric domain D := {x ∈ Rd : ‖x‖ < L/2}, with

the linear differential operator Lx defined as

Lx = −k−d/2(∇2
x − λ2). (41)

It can be shown (14) that this operator is associated with a
Green’s function of the form

ψ(x, s) = ψ̄(x− s) + φ(x, s) (42)

where ψ̄ is given by

ψ̄(x, s) = ψ̃(‖x− s‖)

=

(
k

2π

)d/2 (
λ

‖x− s‖
)d/2−1

Kd/2−1(λ‖x− s‖)
(43)

with Kα(·) being the modified Bessel function of the second
kind of order α, and

φ(x, s) = −ψ̃
(
2
L‖x‖‖s− L2

4

x

‖x‖2 ‖
)
. (44)

B. Screened Poisson Mediated Flocking in Rectangular
Domain

The introduction of the operator Lx allows for the fast com-
putation of the solution of (10) by numerically solving (14).
The hyperbolic and elliptic solvers introduced in Section III-C,
however, are computationally costly when not working in a
rectangular domainD. For this reason, we define the BVP of the
augmented system of PDEs (14) with the same linear differential
operator Lx defined as

Lx = − 1

2k
(∇2

x − λ2), k > 0, λ ∈ R (45)

in a d-dimensional rectangular domain D := [−L/2, L/2]d, L >
0, with homogeneous Dirichlet boundary conditions. The intu-
ition behind this selection is that L can be chosen large enough
to approximately negate the effect of the rectangular domain D
on the interaction function ψ as shown in Fig. 4.

Notice that, as shown in Section III-B, Lx is an elliptic,
self-adjoint (symmetric) partial differential operator that con-
serves mass and momentum. Therefore, in two dimensions, the
augmented system (14) takes the form{

∂tQ+ ∂xF (Q) + ∂yG(Q) = S(Q,Φ)

LxΦ = Q
(46)

where Q := (ρ,m1,m2)
T , F := u1Q, G := u2Q, and

S := (0, ρLψm−mLψρ). System (46) can be generalized to
three dimensions in the obvious way.

In Fig. 3, we illustrate the density and momentum density field
of the solution of system (46) for the initial conditions given in
Section VI-B.

In physics and computer graphics, this operator with λ 
= 0
is associated to the time-independent Klein–Gordon equation
and the screened Poisson equation [31]. In the square region
D := (−L

2 ,
L
2 )× (−L

2 ,
L
2 )with homogeneous Dirichlet bound-

ary conditions, the Green’s function for Lx is given by the
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Fig. 3. Density and momentum field as a solution of system (46) for
the initial conditions given in Section VI-B. The contours correspond to
the density and the quivers to the momentum field. Here, (k, λ) = (4, 1).
The timestamps of the solution are printed at the bottom of each plot.

solution to{
Lxψ(x, s) = δ(x− s) for (x, s) ∈ D ×D

ψ(x, s) = 0 for (x, s) ∈ ∂D × ∂D
(47)

which is the Fourier sine series

ψ(x, s) = 8k

∞∑
m=1

∞∑
n=1

1

μnm + λ2

sin
nπ

L
x′1 sin

nπ

L
s′1 sin

mπ

L
x′2 sin

mπ

L
s′2 (48)

where μn,m = (nπL )2 + (mπL )2, and s′i = si +
L
2 , and similarly

for x′, i.e., a translation of coordinates. This may be easily
verified by separation of variables, or simply computing Lxψ.
It is obvious that ψ(x, s) is symmetric in its arguments, and
that it is singular along x = s. Moreover, via Hopf’s maximum
principle [27], [32], it is clear immediately that ψ(x, s) > 0
∀(x, s) ∈ D ×D. So, following results in [13], [30], ψ(x, s)
can be shown to induce flocking dynamics, as well as collision
avoidance.

Numerical approximations to the Green’s function ψ com-
puted via a spectral method are presented here. The behavior of
this Green’s function is similar to the 1-D Green’s function in
k, λ, although in the 1-D case, the Green’s function has a simple
closed-form, and is nonsingular. In Fig. 4, we illustrate the effect
of the parameters k, λ on the profile of the 2-D interaction
function. The parameter k has an obvious effect on scaling, and λ

has the effect of increasing its growth rate. There are singularities
along x = s.

Fig. 4. Effect of the parameters k, λ on the profile of the interaction
function ψ in the 2-D rectangular domain D := [−π, π]2. The parameter
k has an obvious effect on scaling and λ has the effect of increasing its
growth rate. There are singularities along (x, y) = (s1, s2). In the first
row, (s1, s2) = (0, 0) and in the second row, (s1, s2) = −(π2 ,

π
2 ).

C. Computational Methods

1) Hyperbolic Solver: As in the 1-D case, we apply the
finite volume method [28] to convert the hyperbolic PDE system
(14) into a system of ODEs on cells Iij centered on sequence of
points {(xi, yj)}Ns,Ns

i=1,j=1 evenly spaced with spacing Δx = Δy

d

dt
Q̄i,j = − 1

Δx
(Fi+ 1

2 ,j
− Fi− 1

2 ,j
)

− 1

Δy
(Gi,j+ 1

2
−Gi,j− 1

2
) + S̄i,j . (49)

The interpolated fluxes are given by the Kurganov–Tadmor
fluxes analogously to the 1-D case [29]. We use the same
time integration and limiting procedure as we do in 1-D. The
form of the total variation diminishing (TVD) limiter of the
Kurganov–Tadmor flux changes slightly in 2-D. See [29] for
details.

2) Elliptic Solver: To solve the elliptic equations, we em-
ploy spectral methods, as in 1-D. A basis for L2((0, L)2;R)
with zero BCs is{

bn,m(x, s) := sin
nπx

L
sin

mπs

L

}∞,∞

n=1,m=1
. (50)

As in the 1-D case, candidate solutions to the elliptic BVP for
fixed t are Fourier sine series

φ(x, s, t) =

∞∑
n,m=1

φ̂n,m(t)bn,m(x,′ s′) (51)
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where s′ = s+ L
2 and similarly for x′. Now, we apply the 2-D

operator Lx to φ, which yields
∞∑

n,m=1

1

2k
(μn,m + λ2)φ̂n,m(t)bn,m(x,′ s′) = q(x,′ s,′ t).

(52)
Now, let q̂n,m(t) denote the n,mth Fourier sine coefficient
for q(x,′ s,′ t). Considering an approximation to φ with N2

s

harmonics (Ns in each direction) corresponding to the sameNs
as in the hyperbolic solver, we obtain the semidiscrete spectral
method

φ̂n,m(t) =
2kq̂n,m(t)

μn,m + λ2
, 1 ≤ n ≤ Ns, 1 ≤ m ≤ Ns (53)

where μn,m := (nπL )2 + (mπL )2 are the eigenvalues of the
Laplacian with Dirichlet BCs. We apply the multidimensional
extension of the transforms used in the 1-D case to implement
this spectral method.

Remark 3: We note that, compared to Remark 2, in higher
dimensions, i.e., 2-D and 3-D, one can take advantage of
the divide-and-conquer approach of FFTs as well as paral-
lelization. While a direct 2-D convolution sum has complexity
O(N4

s ), since one needs to compute a double-sum for each
grid point desired, the FFT-based elliptic solver has complexity
O(2N2

s log(Ns) +N2
s ). Please refer to Fig. 2 for quantitative

results.

V. LEARNING THE COORDINATION LAWS

We utilize the methodology and the computational methods
described above to efficiently compute the macroscopic quanti-
ties, i.e., the momentum and density of the swarm, as a solution
to the augmented system of equation (14). We now incorporate
the computation of the swarm’s momentum and density in an
iterative learning scheme to estimate the parameters of the
interaction function ψ.

We formulate the process of learning the interaction function
ψ from density data as a PDE-constrained optimization problem

min
k,λ

tf∑
τ=t0

DKL(P
∗(τ)||P (τ)) (54)

where P ∗(t) and P (t) are probability measures that have den-
sities ρ∗(t, ·) and ρ(t, ·), the observed and simulated mean-field
densities, respectively. The density ρ∗ is assumed given by
observation. The mean-field density ρ associated with P , is
subject to the system of PDEs (14), and therefore, dependent on
the parameter vector θ := (k, λ). The Kullback–Leibler (KL)
divergence DKL in (54) is given by

DKL(Pi||Pj) :=
∫
Ω

log2
dPi
dPj

dPi =

∫
D

ρi log2
ρi
ρj
dx. (55)

The values of ρ(t, ·), ρ∗(t, ·) are evaluated at the sequence of
points xk generated by the finite volume method as described
above, i.e. an approximation (more precisely, a piecewise-
constant discretization) of the densities is needed, which is
either observed or computed by trajectory observations (see Sec-
tion VI). We approximate the solution θ∗ of (54) with respect to

Vd(θ) :=
∑tf
τ=t0

DKL(P
∗(τ)||P (τ)), with the iterative scheme

θn+1 = −Ĥ−1(θn)∇θVd(θ
n) (56)

where Ĥ is a positive-definite approximation of the Hessian
computed via the Lanczos iteration [33]. The gradient is com-
puted by the usual two-point finite difference formula. The KL
divergence is approximated by a Riemann sum over the support
of the observed density, which is sampled over the same grid of
points as the approximated density.

We note that in each iteration of the learning algorithm, the
solution of the BVP associated with the system of PDEs (10)
must be numerically computed, which has become feasible due
to the computational advantages originating from the use of the
proposed linear operator Lx in (15) (see Remarks 2, 3).

A. Learning the Interaction Function From Particle
Trajectories

In order to better understand the computational advantages of
the proposed methodology, we compare it here with a standard
learning approach using trajectory data of the position and
velocity {(xi, vi)}Ni=1 of each particle for some large but finite
number of particles N . In general, this problem is a nonlinear
system identification problem with known system form given
by (1) and unknown interaction function ψ : Rd × Rd → R.

Because of the nonlinearity of (1) and the dependence of
the right-hand side on every pair ((vi, vj)) and ((xi, xj)),
i 
= j, system identification requires the solution of an ODE-
constrained optimization problem of dimension O(N2), which
has a complexity of O(N2N2

s ). As a result, it is apparent that
for large number of particlesN � Ns, the proposed mean-field
methodology is quite faster (see Remarks 2, 3).

An energy-based approach is given in [7], where it is shown
that the Cucker–Smale model (1) is equivalent to a fully
connected N-dimensional network of generalized mass-spring-
dampers with appropriately defined Hamiltonian functions,
that can be written in an input-state-output port-Hamiltonian
form [19]

ż = [J(z)−R(z)]
∂H(z)

∂z
(57)

where z = (q, p), with q, p ∈ R
N(N−1)

2 being the vectors of rel-
ative distances and momenta between each pair of particles, and
the quantitiesJ = −JT ,H andR are appropriately defined. The
dependence of (57) on the interaction functionψ is introduced by
the resistive term R = R(ψ) [7], and is modeled as an artificial
neural network with a single hidden layer. The parameters are
represented by a vector θ and the learning process is formulated
as a least-squares optimization problem

min
θ

tf∑
τ=t0

‖ż∗(τ)− ż(τ)‖2 (58)

where z∗ represents the observed trajectories, and z are subject
to (57), and the solution θ∗ of (58) with respect to Vp(θ) :=∑tf
τ=t0

‖ż∗(τ)− ż(τ)‖2, is approached by an iterative gradient
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descent method

θn+1 = θn − αn(∇θVp(θ
n)), n = 0, 1, 2, . . . (59)

where the iteration maps αn : R2 → R2, n ≥ 0 are defined in
accordance with the Adam method of moments for stochastic
optimization [34], and the computation of the gradient vectors
is implemented using automatic differentiation [35]. It is clear
that the dimension of the dynamical system to be solved within
the optimization problem grows quadratically with the number
of particles N , affecting the scalability of such approaches.
Moreover, the quality of the observed trajectory data is crucial
for the performance of the learning algorithm.

We note, however, that there is a potential advantage in
using the proposed interaction function model (17), (18), even
in learning the interaction dynamics of a swarm from particle
trajectories. First, the number of parameters to be estimated is
greatly reduced, compared to a general regression function such
as a neural network [7], or a mixture of Gaussians [11], which
reduces the amount of data required for convergence. Secondly,
every update in the optimization algorithm improves the estimate
of the interaction function over the entire domain D, and not
only over a small subset Do ⊂ D where the distances between
each pair of interacting particles happen to be observed. This
can result in faster, and, more importantly, robust estimation of
the interaction function.

Finally, as an alternative to solving (58), in case observations
of the particle trajectories are available, we can always numer-
ically integrate to approximate ρ and use this approximation
in our density-based learning algorithm. We will follow this
approach when comparing the experimental results in the 1-D
case in Section VI.

VI. NUMERICAL RESULTS

A. 1-D Case

We illustrate our results in the domainD = [−π, π] (L = 2π),
with initial density and bulk velocity given by

ρ0(x̂) =
π

2L
cos

πx̂

L
, (60)

u0(x̂) = − sin
πx̂

L
, x̂ ∈ D, c > 0 (61)

i.e., assuming that ρ0(x̂) = u0(x̂) = 0, ∀x̂ /∈ D, where x̂ is as
defined in (5). In order to accurately evaluate the learning scheme
defined in Section V, we obtain the empirical density evolution
data ρ∗ by first simulating the particle equation (1) with initial
conditions randomly generated from the initial density and bulk
velocity (61), and then taking the piecewise-constant density
discretization

ρ∗[ti, xs] :=
1

Nsλ(Ij)
μ({xk([ti] ∈ Ij}) (62)

where λ(·) is the Lebesgue measure, μ(·) is the counting mea-
sure, and Ii and xj are defined as in the formulation of the finite
volume method (Section III-C). To showcase the robustness of
our approach to noisy observations, we add a Gaussian noise
εn ∼ N(0, σ2

n) with σ2
n = 1 to the trajectory data. We choose

Fig. 5. Evolution of the 1-D densities ρ(t, x̂) as computed by solving
the macro-scale model and the particle model (dashed-line).

Fig. 6. (left) Training error for the 1-D learning algorithm using obser-
vations of density evolution data. (right) Reconstruction of the interaction
function ψ. Observed data generated by simulating the Cucker–Smale
model (1) with the proposed interaction function ψ∗ as in (17) and (18)
with (k∗, λ∗) = (4, 1).

an interaction function ψ∗ of the form (17), (18) with (k̂∗, λ̂∗) =
(4, 1). The system of particle equations is numerically solved
using the velocity Verlet algorithm [11], which, given a system
of ODEs of the form ⎧⎨

⎩
dx
dt = v

dv
dt = a(x, v, t)

(63)

with appropriate initial conditions and a time-discretization at
steps {0, 1, . . ., i, . . .} with increment Δt, takes the form

vi+ 1
2
= vi +

1

2
a(xi, vi, ti)Δt

xi+1 = xi +Δtvi+ 1
2

vi+1 = vi +
Δt

2
[a(xi, vi, ti) + a(xi+1, vi+ 1

2
, ti+1)]. (64)

The agreement between the solutions of the particle model (1)
and the macroscale model (14) forNs = 2 · 104, Δt = .01, and
cell Δx = 2π

101 , and is shown in Fig. 5. The training error and
the reconstructed interaction function are depicted in Fig. 6.
The parameters (k̂∗, λ̂∗) = (3.98721701, 0.98546559) ∼ (4, 1)
of the interaction function ψ were recovered and the Newton’s
iteration converged in 11 iterations.

As a second experiment, in order to illustrate the expressive-
ness of the proposed family of interaction functions (17) and
(18), and assess the generalizability of the proposed methodol-
ogy, we obtain the “observed” density evolution by simulating
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Fig. 7. (left) Training error for the 1-D learning algorithm using obser-
vations of density evolution data. (right) Reconstruction of the interaction
function ψ. Observed data generated by simulating the Cucker–Smale
model (1) with the original interaction function ψ∗ in (65), with (K∗, γ∗) =
(5, 2).

system (1) with the original Cucker–Smale interaction function

ψCS(x, y) = ψ∗(x− y) =
K∗

(1 + ‖x− y‖2)γ∗ (65)

for (K∗, γ∗) = (5, 2).
The training error and the reconstructed interaction function

are depicted in Fig. 7. We observe that the reconstruction is
not ideal but closely resembles the original interaction function,
while the reconstruction error of the density evolution of the
swarm is negligible. These results validate our hypothesis that
the proposed interaction functions can model a wide range
of collective behaviors, mostly because the model parameters
can control the pairwise communication of the swarm’s agents
without affecting the flocking behavior.

We note that problem (54) is generally a nonconvex opti-
mization problem, and may be sensitive to initial estimates of
the parameters (k, λ) leading to suboptimal solutions (k̂∗, λ̂∗) 
=
(k∗, λ∗). In addition, the discretized objective function for the
densitiesVdmay approach very small values although (k̂∗, λ̂∗) 
=
(k∗, λ∗), suggesting that, for a given set of observation data,
certain nonglobal minima of (54) can produce an accepted
solution for the underlying interaction function of the swarm.
In this case, the reconstructed parameters (k̂∗, λ̂∗) can be used
to accurately reconstruct the actual observed trajectories.

B. 2-D Case

We illustrate our results in the domain D = [−π, π]×
[−π, π], i.e., for L = 2π, with initial density and bulk velocity
given by

ρ0(x̂, ŷ) =
π2

4L2
cos

πx̂

L
cos

πŷ

L
, (66)

u0(x̂, ŷ) = −1

4

(
sin

πx̂

L
, sin

πŷ

L

)T
, x̂, ŷ ∈ [−π, π] (67)

i.e., assuming that ρ0(x̂) = u0(x̂) = 0 ∀x̂ /∈ D. We note that
these initial conditions and compact domain again refer to the
fluctuation variables x̂ defined in (5).

In the 2-D case, we obtain the density data observations by
directly solving the mean-field equation (10) for two different
Cucker–Smale models. First, we solve (46) with the operator
Lx as defined in (15) for (k̂∗, λ̂∗) = (4, 1). An illustration of the

Fig. 8. Training error for the 2-D learning algorithm. (left) Observed
density data generated by simulating the system of PDEs (46), with the
operator Lx in (15) and (k∗, λ∗) = (4, 1). (right) Observed density data
generated by simulating the 2-D Euler equation (10) with the original
Cucker–Smale interaction function ψ∗ in (65) for (K∗, γ∗) = (5, 2). Cost
V is plotted in log2 scale.

density ρ∗ and momentum m∗ evolution over time is given in
Fig. 3. The training error for our learning scheme is depicted
in Fig. 8. The parameters k, λ were estimated as (k̂∗, λ̂∗) =
(4.01514, 1.00194).

Similar to the 1-D case, we test the generalizability of the
proposed methodology, by obtaining the density evolution ob-
servations by directly solving the Eulerian equation (10) with
the original Cucker–Smale interaction function ψ∗ in (65) for
(K∗, γ∗) = (5, 2).

For the integral parts of (10) of the form

φ(x, t) =

∫
D

ψ∗(x− s)q(s, t)ds =

∫
R2

ψ∗(x− s)q(s, t)ds

(68)
where ψ∗ are square-integrable kernels and q compactly sup-
ported on square region D, we employ Fourier transform-based
convolution. Via the properties of the convolution [27], and
denoting φ̂(ξ, t), ψ̂(ξ), q̂(ξ, t) as the Fourier coefficients of the
given functions, we apply the Fourier transform in R2, which
gives

φ̂(ξ, t) = ψ̂(ξ)q̂(ξ, t). (69)

To implement this formula, we use the usual 2Ns zero-padded
FFT on the regularly spaced points given in the hyperbolic solver
to compute the coefficients and approximate the convolution
integrals. This prevents circular convolution.

The training error is depicted in Fig. 8. Similar to the results in
Fig. 7, we expect that the reconstruction of the interaction func-
tion may not be ideal but can closely approximate the original
interaction function, while the reconstruction error of the density
evolution of the swarm gets minimized. These results validate
our hypothesis that the proposed interaction functions can model
a wide range of collective behaviors in multidimensional space.

VII. CONCLUSION

We have considered the problem of understanding the co-
ordinated movements of biological or artificial swarms. While
current learning methodologies mainly use agent-based models,
accurate observations of the position and velocity trajectories of
each agent are required. Because of the difficulty to extract such
observations in real life, we have proposed a learning scheme
to reconstruct the coordination laws of the interacting agents
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from observations of the swarm’s density evolution over time.
We believe that developing learning algorithms based on the
macroscopic quantities of the swarm can play an important role
in the analysis of collective motion and has mainly been inhibited
due to the computational expense of solving the corresponding
mean-field hydrodynamic equations. The results of this work
can be used to model and understand biological and artificial
flocks, and design controllers for large networked systems and
robotic swarms. Moreover, the identification of the coordination
laws of an observed swarm through its density evolution over
time, can lead to the development of fast defensive mechanisms
against adversarial swarm attacks.

APPENDIX I
ANALYTIC COMPUTATION OF THE 1-D GREEN’S FUNCTION ψ

The Green’s function ψ(x, s) of the following BVP:⎧⎪⎨
⎪⎩
− 1

2k (y
′′ − λ2y) = f(x)

y(−L
2 ) = y(L2 ) = 0

−L
2 ≤ x ≤ L

2

takes the form

ψ(x, s) =

{
a(s)e−λx + b(s)eλx, x < s

c(s)e−λx + d(s)eλx, x > s.

The first condition that ψ(x, s) has to satisfy is ψ(−L
2 , s) = 0,

which gives

b(s) = −a(s)eλL. (70)

The second condition is ψ(L2 , s) = 0, which gives

d(s) = −c(s)e−λL. (71)

The third condition comes from the continuity of ψ(x, s) at
x = s

a(s)(e−λs − eλLeλs) = c(s)(e−λs − e−λLeλs) (72)

and the fourth is the differentiability condition at x = s

a(s)(e−λs + eλLeλs) = c(s)(e−λs + e−λLeλs)− 2k
λ
. (73)

Adding (72) and (73) gives

c(s) = a(s) +
k

λ
eλs

and, in addition, subtracting (73) from (72) gives

a(s) = K(e−λs − eλse−λL)

c(s) = K(e−λs − eλseλL)

where

K = −k
λ

1

eλL − e−λL
.

Therefore, the Green’s function ψ(x, s) takes the form

ψ(x, s) =

{
K(e−λs − eλse−λL)(e−λx − eλxeλL), x < s

K(e−λs − eλseλL)(e−λx − eλxe−λL), x > s

which can be equivalently written (by multiplying by eλ L
2 e−λL

2 )
as

ψ(x, s) =

{
Kσm(s)σp(x), x < s

Kσp(s)σm(x), x > s

where

σm(z) = 2 sinh

(
λ(z − L

2
)

)
, σp(z) = 2 sinh

(
λ(z +

L

2
)

)
.

As a final note, it is clear that ψ(x, s) satisfies the symmetry
condition

ψ(x, s) = ψ(s, x).
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