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Online Deterministic Annealing for
Classification and Clustering

Christos N. Mavridis

Abstract—Inherent in virtually every iterative machine learn-
ing algorithm is the problem of hyperparameter tuning, which
includes three major design parameters: 1) the complexity of
the model, e.g., the number of neurons in a neural network;
2) the initial conditions, which heavily affect the behavior
of the algorithm; and 3) the dissimilarity measure used to
quantify its performance. We introduce an online prototype-
based learning algorithm that can be viewed as a progressively
growing competitive-learning neural network architecture for
classification and clustering. The learning rule of the proposed
approach is formulated as an online gradient-free stochastic
approximation algorithm that solves a sequence of appropriately
defined optimization problems, simulating an annealing process.
The annealing nature of the algorithm contributes to avoiding
poor local minima, offers robustness with respect to the initial
conditions, and provides a means to progressively increase the
complexity of the learning model, through an intuitive bifurcation
phenomenon. The proposed approach is interpretable, requires
minimal hyperparameter tuning, and allows online control over
the performance-complexity tradeoff. Finally, we show that
Bregman divergences appear naturally as a family of dissimilarity
measures that play a central role in both the performance and
the computational complexity of the learning algorithm.

Index Terms— Annealing optimization, Bregman divergences,
classification, clustering, machine learning algorithms, progres-
sive learning.

I. INTRODUCTION

EARNING from data samples has become an important
component of artificial intelligence. While virtually all
learning problems can be formulated as constrained stochas-
tic optimization problems, the optimization methods can be
intractable, typically dealing with mixed constraints and very
large, or even infinite-dimensional spaces [1]. For this reason,
feature extraction, model selection and design, and analysis of
optimization methods, have been the cornerstone of machine
learning algorithms from their genesis until today.
Deep learning methods, currently dominating the field
of machine learning due to their performance in multiple
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applications, attempt to learn feature representations from
data, using biologically inspired models in artificial neural
networks [2], [3]. However, they typically use overly complex
models of a great many parameters, which comes in the
expense of time, energy, data, memory, and computational
resources [4], [5]. Moreover, they are, by design, hard to
interpret and vulnerable to small perturbations and adversarial
attacks [6], [7]. The latter has led to an emerging hesitation in
their implementation outside common benchmark datasets [8],
and, especially, in security critical applications. On the other
hand, it is understood that the tradeoff between model com-
plexity and performance is closely related to overfitting, gener-
alization, and robustness to input noise and attacks [9]. In this
work, we introduce a learning model that progressively adjusts
its complexity, offering online control over this tradeoff. The
need for such approaches is reinforced by recent studies
revealing that existing flaws in the current benchmark datasets
may have inflated the need for overly complex models [10] and
that overfitting to adversarial training examples may actually
hurt generalization [11].

We focus on prototype-based models, mainly represented
by vector quantization methods [12]-[14]. In vector quantiza-
tion, originally introduced as a signal processing method for
compression, a set of codevectors (or prototypes) M := {u;},
is used to represent the data space in an optimal way according
to an average distortion measure

m}&n J(M) = E[mind(xa ﬂi):|

where the proximity measure d defines the similarity between
the random input X and a codevector u;. The codevectors
can be viewed as a set of neurons, the weights of which live
in the data space itself and constitute the model parameters.
In this regard, vector quantization algorithms can be viewed as
competitive-learning neural network architectures with a num-
ber of appealing properties: they are consistent, data-driven,
interpretable, robust, topology-preserving [15], sparse in the
sense of memory complexity, and fast to train and evaluate.
In addition, they have recently shown impressive robustness
against adversarial attacks, suggesting suitability in security-
critical applications [16], while their representation of the input
in terms of memorized exemplars is an intuitive approach,
which parallels similar concepts from cognitive psychology
and neuroscience. As iterative learning algorithms, however,
their behavior heavily depends on three major design parame-
ters: 1) the number of neurons/prototypes, which, defines the
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complexity of the model; 2) the initial conditions, that affect
the transient and steady-state behavior of the algorithm; and
3) the proximity measure d used to quantify the similarity
between two vectors in the data space.

Inspired by the deterministic annealing (DA) approach [17],
we propose a learning approach that resembles an anneal-
ing process, tending to avoid poor local minima, offering
robustness with respect to the initial conditions, and pro-
viding a means to progressively increase the complexity
of the learning model, allowing online control over the
performance-complexity tradeoff. We relax the original prob-
lem to a soft-clustering problem, introducing the associa-
tion probabilities p(u;|X) and replacing the cost function
J by D(M) := E[>}; p(u:|X)d(X, u;)]. This probabilistic
framework (to be formally defined in Section III) allows us
to define the Shannon entropy H (M) that characterizes the
“purity” of the clusters induced by the codevectors. We then
replace the original problem by a sequence of optimization
problems

m}viln Fr(M) := DM)—TH(M)

parameterized by a temperature coefficient 7', which acts as a
Lagrange multiplier controlling the tradeoff between minimiz-
ing the distortion D and maximizing the entropy H. By suc-
cessively solving the optimization problems miny, Fr(M) for
decreasing values of T, the model undergoes a series of phase
transitions that resemble an annealing process. Because of
the nature of the entropy term, in high temperatures 7', the
effect of the initial conditions is greatly mitigated, while, as T'
decreases, the optimal codevectors of the last optimization
problem are used as initial conditions to the next, which helps
in avoiding poor local minima. Furthermore, as 7" decreases,
the cardinality of the set of codevectors M increases, according
to an intuitive bifurcation phenomenon.

Adopting the above-mentioned optimization framework,
we introduce an online training rule based on stochastic
approximation [18]. While stochastic approximation offers an
online, adaptive, and computationally inexpensive optimiza-
tion algorithm, it is also strongly connected to dynamical
systems. This enables the study of the convergence of the
learning algorithm through mathematical tools from dynamical
systems and controls [18]. We take advantage of this property
to prove the convergence of the proposed learning algorithm as
a consistent density estimator (unsupervised learning), and a
Bayes risk consistent classification rule (supervised learning).
Finally, we show that the proposed stochastic approximation
learning algorithm introduces inherent regularization mecha-
nisms and is also gradient-free, provided that the proximity
measure d belongs to the family of Bregman divergences.
Bregman divergences are information-theoretic dissimilarity
measures that have been shown to play an important role in
learning applications [19], [20], including measures such as
the widely used Euclidean distance and the Kullback—Leibler
divergence. We believe that these results can potentially lead
to new developments in learning with progressively growing
models, including, but not limited to, communication, control,
and reinforcement learning applications [21]-[23].
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II. PROTOTYPE-BASED LEARNING

In this section, the mathematics and notation of prototype-
based machine learning algorithms, which will be used as a
base for our analysis, are briefly introduced. For more details
see [14], [19], [20], [24].

A. Vector Quantization for Clustering

Unsupervised analysis can provide valuable insights into the
nature of the dataset at hand, and it plays an important role in
the context of visualization. Central to unsupervised learning
is the representation of data in a vector space by typical
representatives, which is formally defined in the following
optimization problem.

Problem I: Let X : Q — S € RY be a random variable
defined in a probability space (Q, F,P),and d : S x ri(S) —
[0, 00) be a divergence measure, where ri(S) represents the
relative interior of S. Let V := {S, }5:1 be a partition of S and
M = {,u;,}{f:1 a set of codevectors, such that u;, € ri(S;), for
all h = 1,...,K. A quantizer Q : S — M is defined as
the random variable Q(X) = >"X_, uulxcs,) and the vector
quantization problem is formulated as

rﬁrll’i‘l} J(Q) :=E[d(X, Q)]

Vector quantization is a hard-clustering algorithm, and,
as such, assumes that the quantizer Q assigns an input vector
X to a unique codevector u, € M with probability one. As a
result, Problem 1 becomes equivalent to

K
min > E[d(X, un)lixes, ] (1)

{un}l, =l

for V being a Voronoi partition, i.e., for

ShzixeS:hzargmin d(x,,u,)], h=1,...,K.

=1,....K

It is typically the case that the actual distribution of X € S
is unknown, and a set of independent realizations {X;}!_, :=
{X (wi)}i_,, for w; € Q, are available. In case the observa-
tions {X;}?_, are available a priori, the solution of the VQ
problem is traditionally approached with variants of the LBG
algorithm [25], a generalization of the Lloyd algorithm [26],
which includes the widely used k-means algorithm [27].

When the training data are not available a priori but
are being observed online, or when the processing of the
entire dataset in every optimization iteration is computationally
infeasible, a stochastic vector quantization (sVQ) algorithm
can be defined as a recursive asynchronous stochastic approx-
imation algorithm based on gradient descent [14]:

Definition 1 Stochastic Vector Quantization Algorithm:
Repeat

it = = a@, )y, coeq Vi d (Xesr, 1)
St = [X € S :h =argmin d(X,,u’T)], hek
t=1,....,k

for + > 0 until convergence, where u is given during
initialization and o(h, t) represents the number of times the
component x; has been updated up until time 7.
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B. Learning Vector Quantization for Classification

The supervised counterpart of vector quantization is the par-
ticularly attractive and intuitive approach of the competitive-
learning learning vector quantization (LVQ) algorithm,
initially proposed by Kohonen [12]. LVQ for binary classi-
fication is formulated in the following optimization problem
(and generalized to any type of classification task, see [28]).

Problem 2: Let the pair of random variables {X,c} €
S x {0, 1} defined in a probability space (Q, F,P), with ¢
representing the class of X and S € RY. Let M := {u,}X_,,
where uj, € ri(Sy) represent codevectors and define the set
C, = {cu,}K_,, such that ¢, € {0, 1} represents the class of
up for all h € {1,..., K}. The quantizer Q¢ : § — {0, 1}
is defined such that Q°(X) = >_, ¢y, lixes,. Then, the
minimum-error classification problem is formulated as

min  J5(Q°) :=m D Pi[X € Syl +mo D PolX € 8]
(- Stie Hy H,
where 7; := P[c = i], P;{-} := P{-|c = i}, and H; is defined
as Hi:={he{l,....,K}: Q° =i}, i €{0,1}.

LVQ algorithms that solve Problem 2 are similar in structure
with the sVQ algorithm of Definition 1 and make use of a
modified distortion measure, which in the case of the original
LVQI algorithm [12] takes the form

d(x> /u), Cx = Cy
_d(-xa /.l), Cx 75 Cu-

Generalizations of this definition based on similar principles
have also been proposed [29], [30].

dl(-x»c)w ,u»c,u) = {

C. Bregman Divergences as Dissimilarity Measures

Prototype-based algorithms rely on measuring the proximity
between different vector representations. In most cases, the
Euclidean distance or another convex metric is used, but
this can be generalized to alternative dissimilarity measures
inspired by information theory and statistical analysis, such as
the Bregman divergences.

Definition 2 (Bregman Divergence): Let ¢ : H — R, be a
strictly convex function defined on a vector space H such that
¢ is twice F-differentiable on H. The Bregman divergence
dy : H x H — [0, 00) is defined as

s, 1) = ) — () — %(ﬂ)(x — 0

where x, u € H, and the continuous linear map (d¢ /) (1) :
H — R is the Fréchet derivative of ¢ at u.

Notice that, as a divergence measure, the Bregman diver-
gence can be used to measure the dissimilarity of one proba-
bility distribution to another on a statistical manifold and is a
notion weaker than that of the distance. In particular, it does
not need to be symmetric or satisfy the triangle inequality.
In this work, we will concentrate on nonempty, compact
convex sets S C RY so that the derivative of dy with respect
to the second argument can be written as

ody o) dp(w)  ’P(w) 0¢ (1)
E(X,H) = Tox  op | on? (x—p)+ “ou
RAMD)

% (x — ) = —=(V2p(u), (x — p))
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where x, u € S, (0/0u) represents differentiation with respect
to the second argument of dy, and V>@(u) represents the
Hessian matrix of ¢ at u.

Example 1: As a first example, ¢(x) = (x,x), x € R?,
gives the squared Euclidean distance

dp(x, ) = llx — u|?

for which (ddy/ou)(x, u) = =2(x — w).

Example 2: A second interesting Bregman divergence that
shows the connection to information theory is the generalized
I-divergence which results from ¢ (x) = (x,logx), x € Ri "
such that

dy(x, y) = {x,logx —log s1) — (L, x — 1)

for which (dy)/(p)(x, 1) = —diag~"(u)(x — u), where 1 €
R¢ is the vector of ones and diag™! () € Riﬁd is the diagonal
matrix with diagonal elements the inverse elements of .
It is easy to see that ¢(x) reduces to the Kullback-Leibler
divergence if (I,x) = 1.

The family of Bregman divergences provides proximity
measures that have been shown to enhance the performance of
a learning algorithm [31]. In addition, the following theorem
shows that the use of Bregman divergences is both necessary
and sufficient for the optimizer u;, of (1) to be analytically
computed as the expected value of the data inside S;, which
is implicitly used by many “centroid” algorithms, such as
k-means [27].

Theorem 1: Let X : Q — S be a random variable defined
in the probability space (Q, F,P) such that E[X] € ri(S),
and let a distortion measure d : S x ri(S) — [0, c0), where
ri(S) denotes the relative interior of S. Then, u := E[X] is
the unique minimizer of E[d(X, s)] in ri(S), if and only if d
is a Bregman divergence for any function ¢ that satisfies the
definition.

Proof:  For necessity, identical arguments, as in [19,
Appendix B], are followed. For sufficiency

E[dy(X, 5)] — E[dp(X, )]

— () + ai (WEX] — )~ $(5) — 22 () @K ~ )

ou
o
=¢W) = ¢() = () —5) =dy(u,5) 20 Vs €8S
with equality holding only when s = u by the strict convexity
of ¢, which completes the proof. 0

In Section III, we will show a similar result for the proposed
algorithm that uses a soft-partition approach.

III. ONLINE DETERMINISTIC ANNEALING FOR
UNSUPERVISED AND SUPERVISED LEARNING

Online vector quantization algorithms are proven to con-
verge to locally optimal configurations [14]. However, as itera-
tive machine learning algorithms, their convergence properties
and final configuration depend heavily on two design para-
meters: the number of neurons/clusters K, and their initial
configuration. Inspired by the DA framework [17], we relax
the original optimization problem (1) to a soft-clustering prob-
lem and replace it by a sequence of deterministic optimization
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problems, parameterized by a temperature coefficient, that
are progressively solved at successively reducing temperature
levels. As will be shown, the annealing nature of this algo-
rithm will contribute to avoiding poor local minima, provide
robustness with respect to the initial conditions, and induce
a progressive increase in the cardinality of the set of clusters
needed to be used, via an intuitive bifurcation phenomenon.

A. Soft-Clustering and Annealing Optimization

In the clustering problem (Problem 1), the distortion func-
tion J is typically nonconvex and riddled with poor local min-
ima. To partially deal with this phenomenon, soft-clustering
approaches have been proposed as a probabilistic framework
for clustering. In this case, an input vector X is assigned,
through the quantizer Q, to all codevectors u, € M with
probabilities p(u,|X), where 2;1;1 p(uplX) = 1. In this
regard, the quantizer Q : S — M becomes a discrete random
variable, with the set M being its image and can be fully
described by the values of M = { ,u;,}{f:l and the probability
functions {p(uy|x)}X_,. In contrast, hard clustering assumes
that Q is a simple random variable that can be described
fully by M and V = {S,}K,, since p(unlX) =
(see Problem 1).

For the randomized partition, we can rewrite the expected
distortion as

D = E[dy(X, Q)]
= E[E[ds(X, 0)|X]]

= [ 00 3 plutnrdytr 0 dx
i

Lixes,

where p(u|x) is the association probability relating the input
vector x with the codevector x«. We note that at the limit, where
each input vector is assigned to a unique codevector with
probability one, this reduces to the hard clustering distortion.
The main idea in DA is to seek the distribution that minimizes
D subject to a specified level of randomness measured by the
Shannon entropy

H(X, M) =E[-log p(X, Q)]
= H(X)+ H(Q|X)

= HOO = [ p) 3 plul) tog plube) dx

n

by appealing to Jaynes’ maximum entropy principle! [32].
This multi-objective optimization is conveniently formulated
as the minimization of the Lagrangian

F=D-TH 2)

where T is the temperature parameter that acts as a Lagrange
multiplier. Clearly, for large values of 7, we maximize the
entropy, and, as T is lowered, we trade entropy for reduc-
tion in distortion. Equation (2) also represents the scalariza-
tion method for tradeoff analysis between two performance
metrics [33]. As T varies, we essentially transition from one

!Informally, Jaynes’ principle states: of all the probability distributions that
satisfy a given set of constraints, choose the one that maximizes the entropy.
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Pareto point to another, and the sequence of the solutions
will correspond to a Pareto curve of the multi-objective opti-
mization (2) that resembles annealing processes in chemical
engineering. In this regard, the entropy H, which is closely
related to the “purity” of the clusters, acts as a regularization
term which is given progressively less weight as T decreases.

As in the case of vector quantization, we form a coordinate
block optimization algorithm to minimize F, by successively
minimizing it with respect to the association probabilities
p(ulx) and the codevector locations x. Minimizing F with
respect to the association probabilities p(u|x) is straightfor-
ward and yields the Gibbs distribution

_dapw)

pulx) = —on VX ES 3)
e~ 7

u
while in order to minimize F with respect to the codevector
locations u, we set the gradients to zero

4 p—0 — LEEac, pix =0
du du

d
= /p(X)p(ulx)@d(x,u) dx =0. (4)

In the following theorem, we show that we can have
an analytical solution to the last optimization step (4) in a
convenient centroid form if d is a Bregman divergence. This
is a similar result to Theorem 1 for vector quantization.

Theorem 2: Assuming the conditional probabilities p(u|x)
are fixed, the Langragian F in (2) is minimized with respect
to the codevector locations u by

_ Jxp(x)p(ulx) dx
p(u)

if d := dy is a Bregman divergence for some function ¢ that
satisfies Definition 2.

W =E[X|u] )

Proof: If d := ds is a Bregman divergence, then,
by Definition 2, it follows that:
RAM)
dn p(x, u) = — v (x — p).
Therefore, (4) becomes
[ = wptopwin ax =0 ®)

which is equivalent to (5) since | p(x)p(ulx) dx = p(u). O

B. Bifurcation Phenomena

This optimization procedure takes place for decreasing
values of the temperature coefficient 7 such that the solution
maintains minimum free energy (thermal equilibrium) while
gradually lowering the temperature. Adding to the physical
analogy, it is significant that, as the temperature is lowered,
the system undergoes a sequence of “phase transitions,” which
consists of natural cluster splits where the cardinality of the
codebook (number of clusters) increases. This is a bifurcation
phenomenon and provides a useful tool for controlling the size
of the clustering model relating it to the scale of the solution.
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At very high temperature (7 — o0) the optimization yields
uniform association probabilities

dpw)
. e T
p(plx) = lim ———— =
T—o0 p e~

1

K

and provided d := dys is a Bregman divergence, all the
codevectors are located at the same point

u = E[X]

which is the expected value of X (Theorem 1). This is true
regardless of the number of codevectors available. We refer
to the number of different codevectors resulting from the
optimization process as effective codevectors. These define
the cardinality of the codebook, which changes as we lower the
temperature. The bifurcation occurs when the solution above
a critical temperature 7, is no longer the minimum of the
free energy F for T < T.. A set of coincident codevectors
then splits into separate subsets. These critical temperatures
T, can be traced when the Hessian of F' loses its positive
definite property, and are, in some cases, computable (see
[17, Th. 1]). In other words, an algorithmic implementation
needs only as many codevectors as the number of effective
codevectors, which depends only on the temperature parame-
ter, i.e., the Lagrange multiplier of the multi-objective mini-
mization problem in (2). As will be shown in Section III-E,
we can detect the bifurcation points by maintaining and
perturbing pairs of codevectors at each effective cluster so
that they separate only when a critical temperature is reached.

C. Online Deterministic Annealing for Clustering

The conditional expectation E[X|x«] in (5) can be approx-
imated by the sample mean of the data points weighted by
their association probabilities p(u|x), that is,

E[Xl,u] — M
p(u)

This approach, however, defines an offline (batch) optimization
algorithm and requires the entire dataset to be available
a priori, subtly assuming that it is possible to store and also
quickly access the entire dataset at each iteration. This is rarely
the case in practical applications and results in computationally
costly iterations that are slow to converge. We propose an
online DA (ODA) algorithm that dynamically updates its
estimate of the effective codevectors with every observation.
This results in a significant reduction in complexity that comes
in two levels. The first refers to huge reduction in memory
complexity, since we bypass the need to store the entire dataset
and the association probabilities {p(u|x), Vx} that map each
data point in the dataset to each cluster. The second level
refers to the nature of the optimization iterations. In the online
approach, the optimization iterations increase in number but
become much faster, and practical convergence is often after
a smaller number of observations.

To define an online training rule for the above-mentioned
optimization framework, we formulate a stochastic approx-
imation algorithm to recursively estimate E[X|u] directly.
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Stochastic approximation, first introduced in [34], was orig-
inally conceived as a tool for statistical computation, and,
since then, has become a central tool in a number of different
disciplines, oftentimes unbeknownst to the users, researchers,
and practitioners. It offers an online, adaptive, and computa-
tionally inexpensive optimization framework, properties that
make it an ideal optimization method for machine learning
algorithms. In addition to its connection with optimization and
learning algorithms, however, the stochastic approximation is
strongly connected to dynamical systems, as well, a property
that allows the study of its convergence through the analysis
of an ordinary differential equation (ODE), as illustrated in
the following theorem.

Theorem 3 [18, Ch. 2]: Almost surely, the sequence
{x,} € S € R? generated by the following stochastic
approximation scheme:

X1 = Xp + a(@)[h(xy) + Myyi], n=0 @)

with prescribed xg, converges to a (possibly sample path
dependent) compact, connected, internally chain transitive, and
invariant set of the ODE

x(1) = h(x(1),

where x : Ry — R, and x(0) = x¢, provided the following
assumptions hold.
(A1) The map h : RY — RY ig Lipschitz in S, i.e., 3L with
0 < L < oo such that ||a(x) — ()| < L|lx — y|l, x,
yeSs.
The stepsizes {a(n) € Riy, n
> a(n) = oo, and X, a*(n) < oo.
{M,} is a martingale difference sequence with respect
to the increasing family of o-fields F, := o (x,y, M,
m < n), n>0, ie., E[M,1|F,] = 0 a.s., for all
n > 0, and, furthermore, { M, } are square-integrable with
E[Mui1l?1F2] < K(1 + |x41°), a.s., where n > 0
for some K > 0.
The iterates {x,}
sup,, |lx, || < oo a.s.
As an immediate result, the following corollary also holds.
Corollary 1: 1f the only internally chain transitive invariant
sets for (8) are isolated equilibrium points, then, almost surely,
{x,} converges to a, possibly sample dependent, equilibrium
point of (8).
Now, we are in place to prove the following theorem.
Theorem 4: Let S a vector space, u € S, and X : Q — §
be a random variable defined in a probability space (Q, F, P).
Let {x,} be a sequence of independent realizations of X, and
{a(n) > 0} a sequence of stepsizes such that > a(n) = oo,
and >, a*(n) < oo. Then, the random variable m, = o,/ p,,
where (p,, 0,) are sequences defined by

t>0 (8)

(A2) > 0} satisfy

(A3)

(A4) remain bounded a.s., i.e.,

Pn+l = pPn+ a(n)[p(,ulxn) — pnl
Ont1 = 0 +a(m)[x, p(ulx,) — 04l 9

converges to E[X|u] almost surely, i.e., m, 25 E[X|pu].
Proof: We will use the facts that p(u) = E[p(u|x)]
and E[1;,;X] = E[xp(u|x)]. The recursive equations (9) are
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stochastic approximation algorithms of the form

pnt1 = pn +a(m)(p(p) — pu) + (p(ulxy) — E[p(u|X)D]
Ont1 = 0p + 0(n)
x[E[ 10 X] = on) + Cup(uln) = Elxa p(u1X)D].
(10)

It is obvious that both stochastic approximation algorithms sat-
isfy the conditions of Theorem 3 and Corollary 1. As a result,
they converge to the asymptotic solution of the differential
equations

p=plu)—p

o = E[]l[ﬂ]X] — 0
which can be trivially derived through standard ODE analysis
to be (p(u), E[1,1X]). In other words, we have shown that

(s o) = (p(p), E[L,0X]). (11)

The convergence of m, follows from the fact that E[X|u] =
E[1;,1X]/p(x) and standard results on the convergence of the
product of two random variables. U
As a direct consequence of this theorem, the following
corollary provides an online learning rule that solves the
optimization problem of the DA algorithm.
Corollary 2: The online training rule

pi(n+1) = pi(n) + am)[ p(uilx,) — pi(n)]
oi(n+1) = oi(n) + am)[x, p(pilx,) — oi(n)]

where the quantities p(u;|x,) and u;(n) are recursively
updated as follows:

12)

_dlin,pi(m)
R pi(n)e 3
p(pilxy) = — dGon i ()
Z,- pi(n)e T
oi(n)
pin) = (13)
pi(n)

converges almost surely to a possibly sample path dependent
solution of the block optimization (3) and (5).

Finally, the learning rule (12) and (13) can be used to define
a consistent (histogram) density estimator at the limit 7 — O.
This follows from the fact that as 7 — 0, the number of
clusters K goes to infinity, p(un|X) — 1Lixes,)» and, as a
result, F — J, i.e., the consistency of Algorithm 1 can be
studied with similar arguments to the stochastic divergence-
based vector quantization algorithm (1) (see [13], [14]).

D. Online Deterministic Annealing for Classification

We can extend the proposed learning algorithm to be used
for classification as well. In this case, we can rewrite the
expected distortion as

D = E[d"(cx, 0°)]
where d”(c., c,) = Lic, #c,)- Because d” is not differentiable,
using similar principles as in the case of LVQ, we can instead
approximate the optimal solution by solving the minimization
problem for the following distortion measure:

dc(x’cx“u,cﬂ):[d(x,ﬂ)a Cy =Cy (14)

0, Cx #Cy.
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This particular choice for the distortion measure d¢ will lead
to some interesting regularization properties of the proposed
online approach (see Section III-E).

It is easy to show that the coordinate block optimization
steps (3) and (5), in this case become

dex )
e T
p(luﬂ C/l"x» CX) = d(xapcp)
UsCy € r
and
,u* . ZCX:C!, xp(x, cx)p(u, Cu |x, cx)

Zcx:c# p(x’ Cx)p(/.l, C,u I-xa Cx)

respectively. In the last step, we have assumed that the class ¢,
of each centroid y is given and cannot be changed dynamically
by the algorithm, which results to the minimization with
respect to x« only. In a similar fashion, it can be shown that
the online learning rule that solves the optimization problem
of the DA algorithm for classification, based on the distortion
measure (14), is given by

piln 1) = pilw) + a1y, _ 1

X [ﬁ(ﬂi, Cu; X, Cx,,) — Pi (n)]

oi(n+1) = oi(n) +a(n)]l[c e, ]
x; =Cp;
X [0 p(uis | X, ) —oi()]  (15)
where
d° (e sexy o (n),c i ()
A pilme™— T
P(ﬂz > Cu; I-xna cxn) = 4 G 1470y ()
Zi Pi (n)87
oi(n)
ui(n) = . (16)
pi(n)

At the limit 7 — 0, the quantization scheme described earlier
equipped with a majority-vote classification rule is strongly
Bayes risk consistent, i.e., converges to the optimal (Bayes)
probability of error (see [13, Ch. 21]). However, due to the
choice of the distortion measure d¢ in (14) used in ODA for
classification, the algorithm can be used to estimate consistent
class-conditional density estimators, which define the natural
classification rule

¢(x) = cupn (17)

where h* = argmax,_; _x p(u.lx), h€{l,...,K}.

E. Algorithm

The proposed ODA algorithm (Algorithm 1) is based
on (15) and (16) and can be used for both clustering and
classification alike, depending on whether the data belong to
a single (clustering) or several classes (classification).

1) Temperature Schedule: The temperature schedule T7;
plays an important role in the behavior of the algorithm.
Starting at high temperature T}, ensures the correct operation
of the algorithm. The value of T,x depends on the domain
of the data and should be large enough such that there is only
one effective codevector at T = Tpx. When the range of
the domain of the data is not known a priori, overestimation
is recommended. The stopping temperature Tp,;, can be set
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a priori or be decided online depending on the performance
of the model at each temperature level. The temperature step
dT; = T;—; — T; should be small enough such that no critical
temperature is missed. On the other hand, the smaller the step
dT;, the more optimization problems need to be solved. It is
common practice to use the geometric series 7;+; = y T;.

2) Stochastic Approximation: Regarding the stochastic
approximation step sizes, simple time-based learning rates,
e.g., of the form a, = 1/a + bn, have been sufficient for
fast convergence in all our experiments so far. Convergence
is checked with the condition dy(u7, ,u;’_l) < €. for a given
threshold ¢, that can depend on the domain of X. Exploring
adaptive learning rates would be an interesting research direc-
tion for the future.

3) Bifurcation and Perturbations: To every temperature
level T;, corresponds a set of effective codevectors {u j}f;p
which consist of the different solutions of the optimization
problem (2) at 7;. Bifurcation, at T;, is detected by maintaining
a pair of perturbed codevectors {u j +9, i j — o6} for each effec-
tive codevector u; generated at T;_y, i.e. for j =1,..., K;_.
Using arguments from variational calculus [17], it is easy to
see that, upon convergence, the perturbed codevectors will
merge if a critical temperature has not been reached, and
will get separated otherwise. In case of a merge, one of the
perturbed codevectors is removed from the model. Therefore,
the cardinality of the model is at most doubled at every
temperature level. For classification, a perturbed codevector
for each distinct class is generated.

4) Regularization: Merging is detected by the condition
dg(uj, ui) < €y, where €, is a design parameter that acts as a
regularization term for the model. Large values for ¢, (com-
pared with the support of the data X) lead to fewer effective
codevectors, while small €, values lead to a fast growth in the
model size, which is connected to overfitting. It is observed
that, for practical convergence, the perturbation noise ¢ is best
to not exceed €,. An additional regularization mechanism that
comes as a natural consequence of the stochastic approxima-
tion learning rule is the detection of idle codevectors. To see
that, notice that the sequence p;(n) resembles an approxima-
tion of the probability p(u;, c,,). In the updates (12) and (13),
pi(n) becomes negligible (p;(n) < ¢,) if not updated by any
nearby observed data, which is a natural criterion for removing
the codevector u;. This happens if all observed data samples
x, are largely dissimilar to u;. In classification, because of
the choice of d¢ in (14), codevectors u; that are not assigned
the same class as the data in their vicinity, will end up to be
removed, as well. The threshold ¢, is a parameter that usually
takes values near zero.

5) Complexity: The worst case complexity of Algorithm 1
behaves as O (oax N Kfmd), where the following holds.

1) N is an upper bound of the number of data samples
observed, which should be large enough to overestimate
the iterations needed for convergence.

2) d is the dimension of the input vectors, i.e., x € R4,

3) Kmax 1s the maximum number of codevectors allowed.

4) omax = {o1,02,...,0k,,}, Where o; is the num-
ber of temperature values in our temperature sched-
ule that lie between two critical temperatures 7; and
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Algorithm 1 ODA
Select Bregman divergence dy
Set temperature schedule: T4, Tinin, ¥
Decide maximum number of codevectors K,
Set convergence parameters: {a,}, €., €,, €, 0
Select initial configuration {u'} : ci=c, Ycel
Initialize: K =1, T = T4
Initialize: p(u’) =1, o (u') = u' p(u;), Vi
while K < K, and T > T,,, do
Perturb p! < {u’ + 6, u* — 8}, Vi
Increment K <« 2K
Update p(u'), o (u') < p' p(u'), Vi
Setn <0
repeat
Observe data point x and class label ¢
fori =1,...,K do
Compute membership s' = ]l[c#,- =c]
Update:

. 11¢(»V=l‘i)
pue 7
. dg (x,p1t)
2 p(ue 7
p(u) < p(u') 4 an[s' p(u'|x) — p(u))]
o(u') < o (i) +an[s'xp(u'lx) — o (1))
i o(n')
<~ ,
p(u')
Increment n <—n + 1
end for
until dy(ul, 1l ) < €, Vi
Keep effective codevectors:
discard u' if dy(u/, p') < €., Vi, j,i # j
Remove idle codevectors:
discard x4 if p(u') < €, Vi
Update K, p(u'), o (u'), Vi
Lower temperature 7 <— y T
end while

p(u'lx) <

T;;+1, with the understanding that at 7; there are i
distinct effective codevectors present. Here, we have
assumed that Ky,,x is achievable within our temperature
schedule.

6) Fine-Tuning: In practice, because the convergence to the
Bayes decision surface comes at the limit (K, T) — (00, 0),
a fine-tuning mechanism should be designed to run on top of
the proposed algorithm after 7i,;,. This can be either an LVQ
algorithm (Section II-B) or some other local model.

IV. EXPERIMENTAL EVALUATION AND DISCUSSION

We illustrate the properties and evaluate the performance
of the proposed algorithm is widely used artificial and real
datasets for clustering and classification.”

A. Toy Examples
We first showcase how Algorithm 1 works in three
simple, but illustrative, classification problems in two

2Code and Reproducibility: The source code is publicly available online at
https://github.com/MavridisChristos/OnlineDeterministicAnnealing.
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(@

Fig. 1. (a)—(c) Illustration of the evolution of Algorithm 1 for decreasing
temperature 7 in binary classification in 2-D. (d) Showcasing robustness
with respect to bad initial conditions. (a) Concentric circles. (b) Half-moons.
(c) Gaussians. (d) Poor initial conditions.

dimensions (Fig. 1). The first two are binary classification
problems with the underlying class distributions shaped as
concentric circles [Fig. 1(a)], and half-moons [Fig. 1(b)],
respectively. The third is a multiclass classification prob-
lem with Gaussian mixture class distributions [Fig. 1(c)].
All datasets consist of 1500 samples. Since the objective is to
give a geometric illustration of how the algorithm works in the
2-D plane, the Euclidean distance is used. The algorithm starts
at high temperature with a single codevector for each class.
As the temperature coefficient gradually decreases (Fig. 1,
from left to right), the number of codevectors progressively
increases. The accuracy of the algorithm typically increases
as well. As the temperature goes to zero, the complexity of
the model, i.e., the number of codevectors, rapidly increases
(Fig. 1, rightmost pictures). This may, or may not, translate
to a corresponding performance boost. A single parameter—
the temperature 7—offers online control on this complexity-
accuracy tradeoff. Finally, Fig. 1(d) showcases the robustness
of the proposed algorithm with respect to the initial config-
uration. Here, the codevectors are poorly initialized outside
the support of the data, which is not assumed known a priori
(e.g., online observations of unknown domain). In this exam-
ple, the LVQ algorithm has been shown to fail [35]. In con-
trast, the entropy term H in the optimization objective of
Algorithm 1, allows for the online adaptation to the domain
of the dataset and helps to prevent poor local minima.

B. Real Datasets

1) Clustering: For clustering, we consider the following
datasets: 1) the dataset of Fig. 1(c) (Gaussians); 2) the WBCD
dataset [36]; 3) the PIMA dataset [37]; and 4) the Adult
dataset® [36]. In Fig. 2, we compare Algorithm 1 with the

315000 samples randomly selected. Nonnumerical features removed.
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Fig. 2. Algorithm comparison for clustering. (a) Gaussians. (b) WBCD.

(c) PIMA. (d) Adult.

TABLE I
CLASSIFICATION ACCURACIES IN FIVE-FOLD CROSS VALIDATION

DATA SET ODA SVM NN RF

GAUSSIAN 98.9+00 79.5+00 98.6x00 98.7+00
WBCD 90.7+00 85.6+00 92.7+00 94.6+00
CREDIT (F1) 95.6+£00 69.1£02 58.9+01 62.8+01
PIMA 70.5+00 62.9+00 76.3x00 74.4+00

online sVQ algorithm (Definition 1), and two offline algo-
rithms, namely, k-means [27], and the original DA algo-
rithm [17]. The algorithms are compared in terms of the
minimum average distortion achieved, as a function of the
number of samples they observed, and the number of clusters
they used (floating numbers inside Fig. 2). The Euclidean
distance is used for fair comparison. Since there is no criterion
to decide the number of clusters K for k-means and sVQ,
we run them sequentially for the K values estimated by DA
and add up the computational time. All algorithms are able
to achieve comparable average distortion values given good
initial conditions and appropriate size K. Therefore, the pro-
gressive estimation of K and the robustness with respect to the
initial conditions are key features of both annealing algorithms,
i.e., DA and ODA (Algorithm 1). Compared with the offline
algorithms, i.e., k-means and DA, ODA and sVQ achieve
practical convergence with significantly smaller number of
observations, which corresponds to reduced computational
time, as argued earlier. Notice the substantial difference in
running time between the original DA algorithm and the
proposed ODA algorithm in Fig. 3. Compared with the online
sVQ (and LVQ), the probabilistic approach of ODA introduces
additional computational cost: all neurons are now updated in
every iteration, instead of only the winner neuron. However,
the updates can still be computed fast when using Bregman
divergences (Theorem 2), and the aforementioned benefits of
the annealing nature of ODA, outweigh this additional cost in
many real-life problems.
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Fig. 3. Running time of the algorithms in Figs. 2(a) and 4(a).

2) Classification: For classification, we consider the
Gaussian [Fig. 1(c)], WBCD, PIMA, and credit card* [38]
datasets. We compare Algorithm 1 against an SVM model
with a linear kernel [39], a feedforward fully connected neural
network with a single-hidden layer of nyy neurons (NN), and
the random forests (RFs) algorithm with frp estimators [40].
These algorithms have been selected to represent today’s stan-
dards in simple classification tasks, i.e., when no sophisticated
feature extraction is required. The SVM classifier represents
the class of linear classification models, the neural network
represents the class of nonlinear approximation models, and
the random forests algorithm represents the class of partition-
based methods with bootstrap aggregating. Table I shows the
results of a five-fold cross validation (80%/20%), and Fig. 4
shows the performance of the algorithms during a random
test. The evolution of the complexity of the ODA model is
shown as a function of the observed samples and the classifi-
cation accuracy achieved. We use the generalized I divergence
(Example 2) in the WBCD dataset and the Euclidean distance
in the rest. ODA (Algorithm 1) outperforms the linear SVM
classifier and can achieve comparable performance with the
NN and the RF algorithms, which are today’s standards in
classification tasks where no feature extraction is required.
In the greatly unbalanced credit card dataset, all algorithms
achieved accuracy close to 100%, but the F1 scores dropped
significantly [Fig. 4(d)]. Notably, this was not the case with the
ODA algorithm. This may be due to the generative nature of
the algorithm and might also be an instance of the robustness
expected by vector quantization algorithms [16]. Justifying and
quantifying this robustness is beyond the scope of this article.

3) Parameters: The parameters nny € [10,100] and
trrr € [10, 100] were selected through extensive grid search.
In contrast, the parameters of the ODA algorithm for all the
experiments were set as follows: T, = 100Asd, Thin =
0.001Agd, Kmax = 100, y = 0.8, €. = 0.0001Agd, ¢, =
0.001Agd, ¢, = 1077, 6 = 0.01Agd, and a, = 1/1 +0.9n,
where d is the number of dimensions of the input X € S C R4,
and A represents the length of the largest edge of the smallest
d-orthotope that contains S. We stress that no parameter tuning
has taken place for the proposed algorithm.

4) Limitations: Finally, we note that both NN and RF out-
perform Algorithm 1 in some datasets (Table I). A fine-tuning
mechanism, as discussed in Section III-E, could alleviate these
differences and is currently not used in our experiments.
Regarding the running time of the ODA algorithm, Fig. 3
shows the execution time of the learning algorithms used
in Figs. 2(a) and 4(a). All experiments were implemented

415000 samples randomly selected.
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Fig. 4. Algorithm comparison for classification. (a) Gaussians. (b) WBCD.
(¢c) PIMA. (d) Credit card (F1 score).
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in a personal computer. We note that in contrast to the
commercial, and, therefore, optimized versions of the k-means,
SVM, NN, and RF algorithms, the algorithmic implemen-
tation of the proposed algorithm is not yet optimized and
substantial speedup is expected through appropriate software
development.

V. CONCLUSION

It is understood that the tradeoff between model com-
plexity and performance in machine learning algorithms is
closely related to overfitting, generalization, and robustness
to input perturbations and adversarial attacks. We investigate
the properties of learning with progressively growing models
and propose an online annealing optimization approach as a
learning algorithm that progressively adjusts its complexity
with respect to new observations, offering online control over
the performance-complexity tradeoff. The proposed algorithm
can be viewed as a neural network with inherent regularization
mechanisms, the learning rule of which is formulated as an
online gradient-free stochastic approximation algorithm. As a
prototype-based learning algorithm, it offers a progressively
growing knowledge base that can be interpreted as a memory
unit that parallels similar concepts form cognitive psychology
and neuroscience. The annealing nature of the algorithm pre-
vents poor local minima, offers robustness to initial conditions,
and provides a means to progressively increase the complexity
of the learning model as needed. To the best of our knowledge,
this is the first time such a progressive approach has been
proposed for machine learning applications. We believe that
these results can lead to new developments in learning with
progressively growing models, especially in communication,
control, and reinforcement learning applications.
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