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Constructive Function Approximation with Local Models

Christos N. Mavridis, and Karl Henrik Johansson

Abstract— We introduce a constructive function approxi-
mation approach as a general tool, particularly useful in
adaptive and data-driven methods for perception and con-
trol. The key idea is to estimate of a collection of simple
local models as opposed to a single and complex regression
model trained in the entire input space. We use principles
from the Online Deterministic Annealing (ODA) optimization
framework to construct an adaptive partition of the input space,
which enables the introduction of local function approximation
models within each subset of the partition. We show that
both the partitioning and the local model training algorithms
are stochastic approximation algorithms that operate online,
and with the same observations, as part of a two-timescale
stochastic approximation scheme. This process constitutes a
heuristic method to gradually increase the complexity of the
function approximation framework in a task-agnostic manner,
giving emphasis to regions of the input space where the
regression error is high. As a result this framework has
inherent explainability properties, and is suitable for continuous
learning applications where regression improvement without re-
training from scratch is crucial. Simulation results illustrate the
properties of the proposed approach.

I. INTRODUCTION

Learning from observations is pivotal to autonomous
decision-making and communication systems. Mathemati-
cally, such learning problems are often formulated as con-
strained stochastic optimization problems: given realizations
of a random variable X € S representing the observations,
an optimal parameter vector § € © is to be found such that
a well-defined error measure between an unknown function
f(X) € F and a learning model f(X,6) € F, parameterized
by 6, is minimized under potentially additional constraints.
However, the solution of such problems over the entire
domain S often requires the learning model f (X,0) to be
particularly complex, making the estimation of ¢ costly, and
raising issues with respect to phenomena such as over-fitting,
generalization, and robustness, connected by an underlying
trade-off between complexity and performance [1], [2]. As
a result, the ability to gradually approximate a solution to
these problems is essential to decision-making systems that
often operate in real-time and under limitations in memory
and computational resources.

Current deep learning methods have made progress to-
wards the construction of a hierarchical representation of
the data space [3]-[6]. However, such approaches do not
necessarily satisfy the above description of hierarchical
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learning, since they typically use overly complex models
over the entire data space .S, which comes in the expense
of time, energy, data, memory, and computational resources
[71, [8]. In this work, we are mainly focusing on a framework
for hierarchical progressive learning and data representation,
where a gradually growing and hierarchically structured
set of learning models is used for function approximation.
We consider a prototype-based learning framework where,
given random observations of X € S, a set of prototypes
{pi}, ni € S (also called codevectors or neurons), are
scattered in the data space S to encode subsets/regions
{S;} that form a partition of S [9]. This adheres to the
principles of vector quantization for signal compression [10].
In this regard, a knowledge representation can be defined
as the set of codevectors {p; € S} that induce a structured
partition {S;} of the data space S, along with a set of
local learning models f (x,0;) associated with each region
S;, parameterized by their own set of parameters 6;. A
structured representation like this allows, among other things,
to locate specific regions of the space that the algorithm
needs to approximate in greater detail, according to the
problem at hand and the designer’s requirements. This results
in adaptively allocating more resources only in the subsets of
the data space that are needed, and provides benefits in terms
of time, memory, and model complexity. Moreover, learning
with local models that take advantage of the differences
in the underlying distribution of the data space provides a
means to understand certain properties of the data space
itself, i.e., this is an interpretable learning approach [11]—
[13]. An illustration of this framework is given in Fig. 1.

Regarding the learning process, we are interested in algo-
rithms that are able to simultaneously solve both the prob-
lems of partitioning and function approximation, given online
(e.g., real-time) observations. This is of great importance
in many applications, and especially in the scope of learn-
ing algorithms for inference and control in general cyber-
physical systems [1], [14]-[16], as well as complex hybrid
systems [17], [18]. To construct a sequence of partitions with
increasing number of subsets we build upon the notion of
Online Deterministic Annealing [19] and define a series of
soft-clustering optimization problems:

min F)\(X7 Q) = (1 - )‘)D(Xa Q) - )‘H(X7 Q)a

Hi
parameterized by a Lagrange coefficient A € [0,1] con-
trolling the trade-off between minimizing an average dis-
tortion measure D(X,Q) := E[d(X,Q)], for an appro-
priately defined dissimilarity measure d, and maximiz-
ing the Shannon entropy H(X,Q), with H(X,Q) :=
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(a) Classical regression problem.

fi/ (X7 071’)
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min E [Z lixes,d (f(X)afi(X7 01-))]

(b) Combined problem of partitioning and func-
tion approximation.

Fig. 1: Comparison of the classical regression problem over the entire domain .S with the problem of combined partitioning
and regression within each subset of the partition. Here the input X € S is a random variable and the function f(X) is to

be estimated over S by (a) a single learning model f(X,6), and (b) a set of { f(X, 07)} defined in each region S;, where

{S;} is a partition of S to be estimated as well.

E [—logp(X, Q)]. The novelty of the approach lies in the
definition of () as a random variable described by the
association probabilities p(u;|X = x) that represents the
probability of a data point = to belong to the subset S; :=
{zeS:i=arg min; d(z, 1) }. Once the joint probability
space of (X, Q) is defined, successively solving the opti-
mization problems ming,.; Fx(X, Q) for decreasing values
of A, leads in a series of bifurcation phenomena when
the cardinality of the set of codevectors {u;} increases,
resembling an annealing process that introduces inherent
robustness and regularization properties [19], [20].

An important property of this approach, initially shown in
[19], is that the optimization problems ming,,; F)(X,Q)
can be solved online, using gradient-free stochastic approxi-
mation updates [21], as long as the measure d belongs to
the family of Bregman divergences, information-theoretic
dissimilarity measures that include, among others, the widely
used squared Euclidean distance and Kullback-Leibler di-
vergence [22], [23]. We exploit the fact that a stochastic
approximation algorithm can be used as a training rule for
constructing the partition {S;}, to build a framework that

defined

in each region S;. In particular, according to the theory of
two-timescale stochastic approximation [21], we define two
stochastic approximation algorithms that run at the same time
and with the same observations but with different stepsize
schedules that define a fast and a slow learning process.
The slow process approximates the parameters {y;} and as
a result the partition {S;}, and the fast process executes a
function approximation algorithm within each S; to find the
optimal parameters 6; for the learning model f(x, 6;).

The paper is organized as follows: Section II introduces
the Online Deterministic Annealing (ODA) framework for
progressive partitioning along with a mathematical analysis
of its properties. Section III develops the two-timescale
framework for combined partitioning and function approxi-
mation. Finally, Section IV illustrates simulation results, and
Section V concludes the paper.

simultaneously trains the learning models { f(z, 92)}
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II. ONLINE DETERMINISTIC ANNEALING

We start our analysis with the case of unsupervised
learning, where partitioning a space S is equivalent to the
problem of clustering and density estimation. In this context,
the observations (data) are independent realization of a
random variable X : Q — S defined in a probability space
(Q,F,P), where S C R? is the observation space (data
space). In the Online Deterministic Annealing approach [1],
[19], one defines a similarity measure d : S — ri(S)!, and
a discrete random variable @ : S — 7i(S) with domain
o= {ui}iK:l, i € ri(S) described by the association
probabilities {p(p;|z) := P[Q = u;|X = z]}, Vi, such that

min Fy(p) := (1= A)D () — AH (1) (D

This is a multi-objective optimization problem formulated
as the minimization of a Lagrangian function, where A\ €
[0,1) acts as a Lagrange multiplier controlling the trade-off
between the average distortion:

min D(p) = Ed (X, Q)]
=E[E[d(X,Q)|X]]

- / p(a) Y plpila)d(a, ) do

and the entropy term:

() = B[ log P(X, Q)
= H) ~ [ p(e) 3 plulo) g plule) d

The entropy H, acts as a regularization term, and is given
progressively less weight as A decreases. The term T :=
ﬁ, A €[0,1) can be seen as a temperature coefficient in
a deterministic annealing process [19].

Following the Online Deterministic Annealing (ODA)

approach [1], [19], we minimize F) in (1) by successively

1ri(S) represents the relative interior of S.
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minimizing it first respect to the association probabilities
{p(pi]z)}, and then with respect to the codevector locations
. The solution of the optimization problem

Fy = min F s.t. iz) =1,
X(w) = min Fa(u) zi:p(ul ) @)

is given by the Gibbs distributions

e_%d(zv‘ui)

P (ule) = L Wees. O

1—X
Ej e~ d(@p;

Furthermore, it has been shown in [19] that if d := dg is a
Bregman divergence?, then the conditional expectation:

~ Jap(@)p*(pilx) da

i =E[X|p] = O]
Kl v ()
is a solution to the optimization problem
min F(u). (5)

Moreover, a stochastic approximation algorithm can be
formulated [19] to recursively estimate E [X|u;] directly,
according to Theorem 1.

Theorem 1 ( [19]): Let {x,} be a sequence of indepen-
dent realizations of X. Then p;(n), defined by the online
training rule

pi(n+1)

— pu(n) + am) [p(sle,) — pi()]
= 04(n) + a(n) [2ap(pila) — o3 ()

where Y a(n) = oo, Y, @*(n) < oo, and the quantities
Pp(pi|zn) and p;(n) are recursively updated as follows:

(6)

Di (n)e_ %d(wn wi(n))

3, pi(n)e= = d(@n:ni(n)
(N
converges almost surely to a locally asymptotically stable
solution of the optimization (5), as n — co.
Remark 1: Notice that we can express the dynamics of
the codevector parameters yu;(n) directly as:

a(n) [oi(n+1)

paln 1) = pi(n) L pi(n+1)

(pi(n) — p(ps|zn))

®)
+ (znﬁ(.u”xn) - 07(”))
where the recursive updates take place for every codevector
1; sequentially. This is a discrete-time dynamical system that
presents bifurcation phenomena with respect to the parameter
A, i.e., the number of equilibria of this system changes
with respect to the value A which is hidden inside the term
Pp(pi)zn) in (7). According to this phenomenon, the number
of distinct values of p; is finite, and the updates need only

>The function dg is a Bregman divergence if there exists a strictly
convex function ¢ such that dg, (x, 1) = ¢ (x) — ¢ (1) — g—ﬁ (w) (z — p).
Two notable examples are the squared Euclidean distance dg(z,pn) =
|z — ul|? (p(z) = (x,x), = € R?), and the the generalized Kullback-
Leibler divergence dy(x, ) = (z,logz —logu) — (1, — p) (¢(x) =
(z,logz), z € Ri_ﬁ. For more details see, e.g., [1], [22], [24].

be taken with respect to these values that we call “effective
codevectors”. This is discussed in Section II-A.

Finally, in the limit A — 0, (6) and (7) result in a
consistent density estimator, i.e., the representation of the
random variable X € S by the codevectors p becomes all the
more accurate in .S, according to the underlying probability
density p(x) [1], [12].

A. Bifurcation, Algorithmic Implementation, and Complexity

First, notice that when A — 1 (resp. ' — 00) equa-
tion (3) yields uniform association probabilities p(u;|x) =
p(pjlz), Yi,j,Ya. As a result of (4), all codevectors are
located at the same point:

which means that there is one unique effective codevector
given by E [X].

As )\ is lowered below a critical value, a bifurcation
phenomenon occurs, when the number of effective codevec-
tors increases. Mathematically, this occurs when the existing
solution p* given by (4) is no longer the minimum of the free
energy F'*, as \ (resp. the temperature 7°) crosses a critical
value. Following principles from variational calculus, we can
rewrite the necessary condition for optimality (4) as

d . -
&F (1 +ep)|e=o =0 )

with the second order condition being

d2
TP {0 2 0

for all choices of finite perturbations {1}. Here we denote by
{y := p + ey} a perturbed codebook, where v are perturba-
tion vectors applied to the codevectors p, and € > 0 is used
to scale the magnitude of the perturbation. Bifurcation occurs
when equality is achieved in (10) and hence the minimum
is no longer stable®. These conditions are described in the
Theorem 2.

Theorem 2: Bifurcation occurs under the following con-
dition

(10)

1—\82(y:
Jy; s.t. p(y;) > 0 and det |I — )\/\agy(;/‘)

Clei = 07

1D

where Cx|y, = E [(X — ;) (X — ;) |ui].
Proof: See [12]. [ ]
In other words, there exist critical values for A\ that depend
on the data space itself and the choice of the Bregman
divergence (through the function ¢), such that bifurcation

occurs when \ 52

1-X oy?

where 7 is the largest eigenvalue of Cx|,, . That is to
say that an algorithmic implementation needs only as many
codevectors as the number of effective codevectors, which

3For simplicity we ignore higher order derivatives, which should be
checked for mathematical completeness, but which are of minimal practical
importance. The result is a necessary condition for bifurcation.
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depends only on changes of the temperature parameter below
certain thresholds that depend on the dataset at hand and
the dissimilarity measure used. However, we can detect
the bifurcation points by introducing perturbing pairs of
codevectors at each temperature level A (resp. T'). In this way,
the codevectors p are doubled by inserting a perturbation
of each pu; in the set of effective codevectors. The newly
inserted codevectors will merge with their pair if a critical
temperature has not been reached and separate otherwise.
For more details about the implentation of the algorithm the
readers are referred to [12], [19].

The complexity of Alg. 1 for fixed coefficient \; is
O(N,,(2K;)*d), where N,, is the number of stochastic
approximation iterations needed for convergence which cor-
responds to the number of data samples observed, K
is the number of codevectors of the model at temper-
ature \;, and d is the dimension of the input vectors,
ie., x € R Therefore, assuming a coefficient schedule
{AM = Mnazs A2, -« o, ANy = Amin }» the time complexity for
the training of Algorithm 1 becomes: O(N,(2K)?d), where
N. = max; {N.,} is an upper bound on the number
of data samples observed untll convergence at each tem-
perature level, and K Z y K, with Ny < K <
min {002 2, zfigKW 2"} < N\Kpaq. The actual
value of K depends on the bifurcations occurred as a result of
reaching critical temperatures and the effect of the regulariza-
tion mechanisms described above. Note that typically N, <
N as a result of the stochastic approximation algorithm, and
K <« N)K,.5 as a result of the progressive nature of the

algorithm. Prediction scales linearly with O(Ky,d), with
KNA § Kmam~

III. LEARNING WITH LOCAL MODELS

In this section, we investigate the problem of combined
partitioning and function approximation, where multiple lo-
cal models are trained, taking advantage of the differences
in the underlying probability distribution of the data space.
As a consequence, this approach can circumvent the use
of overly complex learning models, reduce time, memory,
and computational complexity, and give insights to certain
properties of the data space [13].

First, we assume a function f : S — F and models
fi(x,05), fi - S — 7, that are differentiable with respect to
a parameter vector §; € ©, where O is a finite-dimensional
vector space. The problem of finding the optimal partition
parameters {S; }f((f‘ , for K(\) < oo, given the local model
parameters {6; }, can be formulated as an online deterministic
annealing problem of the form (1) in the augmented space
of the random variable

X
7= [f(X)} cESxT (13)

and reads as
min F) (d(Z,Q)),

{ni}

(14)
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Algorithm 1 Progressive Partitioning.

Select a Bregman divergence d
Set stopping criteria Tsiop (€.8., Kmaz> Amin)
Set convergence parameters: v, €., €y, €, 0
Set stepsizes: {c, }
Initialize: K =1, A =1,
{ro}, p(po) =1, o(po) = pop(po)
repeat
Perturb codebook: {y;} < {p; + 6} J{w:i — ¢}

Update K < 2K, {p(us)}, {o(ui) < pip(ps)}

n <0
repeat
Observe data point x
fori=1,...,K do
Update: pli)e 13, (o)
Pluile) + > p(pi)e” 52 dg (wp)
p(pi) <= p(pi) + om [p(pilz) — p(pi)]
o(pi) < o(pi) + an [zp(pilz) — o(pi)]
o (
s ()
p(ki)
n+<n+1
end for
until Convergence: —d¢(uZ ) < e, Vi

Keep effective codevectors:
discard p; if %d(ﬁ(uj,,ui) < €n, Vi,5,1 F j
Remove idle codevectors:
discard p; if p(pi) < €, Vi
Update K, {p(ui)}, {o(pi)}
Lower temperature: A <— yA
until Tstop

where the quantizer ) : S — S x F is a stochastic mapping
of the form:

f(;“al)]  plnl)

15)

Hi
i GK)] . plugle)

It is easy to see that, assuming {u;} are the controlled
parameters of the mapping @) and {6;} are the uncontrolled
parameters (to be estimated by external algorithm), equa-
tions (3) and (4) continue to hold for {p(u;|x)} and {u;},
respectively. That is, the online deterministic algorithm can
be used in the augmented space S x J to adaptively estimate
a partition of the input space S such that, the error (14) is
minimized.

Conversely, given a finite partition set of parameters
{Si}iK:(f‘ ), for K (M) < o0, the local function approximation
problem is formulated as:

min E []I[Xesi]d(f(X),fi(X, 9»)} Li=1,...

0;
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where d : F x F — [0,00) is assumed a metric that
is differentiable and convex with respect to the second
argument. This is a stochastic optimization problem that
can be solved using stochastic approximation updates. In
particular, one can use stochastic gradient descent:

0i(n+1) = 0i(n) — B(n)Vod(f(2n), fi(xn,0i(n)))
a7
which is a special case of a stochastic approximation algo-
rithm that, under mild assumptions, converges almost surely
to an asymptotically stable local minimum of the objective
f]l[Xésq]d(f(xn)a fz(xvez))} (see c.g. [18D).
However, we are interested in a learning approach that

function E

approximates {S;} and { ﬁ(m,@i)} at the same time, and
given the same observations {(x,, f(x,))} which may be
available one at a time (i.e, no dataset is stored in memory
a priori). This is possible because both learning algorithms
for {S;} and { f; (a:,&i)} independently are stochastic ap-
proximation algorithms. According to the theory of two-
timescale stochastic approximation, we can run both learning
algorithms at the same time, but using different stepsize
profiles {«(n)} and {B(n)}, such that «(n)/gn) — O.
Intuitively, we create a system of two dynamical system
running in different “speed”, meaning that second system,
the one with stepsizes {$(n)}, is updated fast enough that
the first system, the one with stepsizes {«(n)}, can be seen
as quasi-static with respect to the second. The following
theorem follows directly from the results of Ch. 6 in [25].

Theorem 3 ( [12]): Let {z,} be a sequence of indepen-
dent realizations of X, and assume that yu;(n) is a sequence
updated using the stochastic approximation algorithm in
(6) with stepsizes {«(n)} satisfying > a(n) = oo, and
>, @*(n) < co. Then, as long as {3(n)} are designed such
that >, B(n) = oo, Y, B*(n) < oo, and *(")/g(n) — 0,
the asynchronous updates

O:(n+1)=0;(n) — B(n)Ved(f(z,), fz(:cn, 0;(n))), (18)

for i = argmin; dy(zn,u;(n)) converges almost surely
to a locally asymptotically stable solution {6;} of (16), as
n — oo, for S; = {z € §: i = argmin; dy(z,p;(c0))},
where 11;(00)) is the asymptotically stable equilibrium of (6).

Proof: Follows directly from the two-timescale approx-
imation theory [12]. |

IV. SIMULATION RESULTS

We illustrate the properties and evaluate the performance
of the proposed learning algorithm in two simple regression
problems. In Fig. 2, the evolution of the proposed algorithm
is depicted in an one-dimensional function approximation
problem using linear local models. The choice of simple
linear models is made to illustrate the properties of the
approach. Notice that, at first (high temperature coefficient
M), a single linear model is trained. Since the model is not
rich enough to capture the original function in the entire
space, the regression error is high across the entire input

space. As A decreases, the regions of the input space that
correspond to more complex behavior in the output space
are gradually divided into finer partitions. As a result, a
collection of linear local models is constructed, reducing the
function approximation error while increasing the complexity
of the algorithm. This process showcases the performance-
complexity trade-off described in Section II. Finally, in Fig.
3, we test the proposed methodology in a 2D regression
problem using constant local models, resulting in a piece-
wise constant function approximation scheme.

V. CONCLUSION AND FUTURE WORK

We introduced a function approximation framework,
where, instead of a single and complex regression model,
trained in the entire input space, a collection of simpler
local models is used. We used principles from the online
deterministic annealing optimization framework to construct
an adaptive partition of the input space, which enables the
introduction of local function approximation models within
each subset of the partition. The proposed method constitutes
a heuristic method to gradually increase the complexity of
the function approximation framework in a task-agnostic
manner, giving emphasis to regions of the input space where
the regression error is high. As a result this framework has
inherent explainability properties, and is suitable for con-
tinuous learning applications where regression improvement
without re-training from scratch is crucial.

The properties of the proposed approach will be investi-
gated in the context of closed-loop data-driven control, cyber-
physical security, and adaptive identification.

REFERENCES

[1] C. Mavridis and J. S. Baras, “Annealing optimization for progressive
learning with stochastic approximation,” IEEE Transactions on Auto-
matic Control, vol. 68, no. 5, pp. 2862-2874, 2023.

[2] K. P. Bennett and E. Parrado-Herndndez, “The interplay of optimiza-
tion and machine learning research,” The Journal of Machine Learning
Research, vol. 7, pp. 1265-1281, 2006.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol.
521, no. 7553, pp. 436444, 2015.

[4] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527-
1554, 2006.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097-1105.

[6] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional
deep belief networks for scalable unsupervised learning of hierarchical
representations,” in Proceedings of the 26th annual international
conference on machine learning, 2009, pp. 609-616.

[71 N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The com-
putational limits of deep learning,” arXiv preprint arXiv:2007.05558,
2020.

[8] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-
erations for deep learning in nlp,” arXiv preprint arXiv:1906.02243,
2019.

[91 M. Biehl, B. Hammer, and T. Villmann, “Prototype-based models in
machine learning,” Wiley Interdisciplinary Reviews: Cognitive Science,
vol. 7, no. 2, pp. 92-111, 2016.

[10] T. Kohonen, Learning Vector Quantization.
Springer Berlin Heidelberg, 1995, pp. 175-189.

[11] C. Mavridis and J. S. Baras, “Explainable learning with hierarchical
online deterministic annealing,” in European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML-PKDD), Workshop on Uncertainty meets Explain-
ability in Machine Learning, 2023.

Berlin, Heidelberg:

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on May 09,2025 at 16:54:12 UTC from IEEE Xplore. Restrictions apply.



20 20
— flx) — flx) — flx)
f f f
15 N -4 N 15 ‘ W N 151 ‘ w N
e=1(x) - f(x) e=1f(x) - flx) e="fx) - flx)
\ I\
| |
X0 VA X0 NN X
= [V = \/ =
[T\ Al
5 .y 5 l.-’.l-.-.i-‘--
— / \
0 0 t—— | — \
=10 -5 0 5 10 15 20 =10 =5 0 5 10 15 20 20
X X
20 20
— fx) — fx)
1s o f(x) ) s . flx) .
e=f(x) - f(x) e=1fx) - fx)

Al
s \
. N

15 20

15 20

Fig. 2: Evolution of the proposed algorithm with linear local models, resulting in piece-wise linear function approximation
in 1D. The regions of the input space that correspond to more complex behavior in the output space are gradually divided
into finer partitions.

N oB oo o

5 -5
0 -10

-5
-10

(a) Evolution of the algorithm in the data space.

10

8

6
A
JUIAN

=rain

distortion (ave.)

~

Samples

Test \ .

25000

20000

15000

Samples

10000

5000

0 10 20

30

40

time (s)

50

(b) Performance curves.

Fig. 3: Performance curves and data space evolution of the proposed algorithm resulting in piece-wise constant function
approximation in 2D.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

C. Mavridis and J. Baras, “Multi-resolution online deterministic an-
nealing: A hierarchical and progressive learning architecture,” arXiv
preprint arXiv:2212.08189, 2022.

S. Riiping, “Learning with local models,” in Local Pattern Detection,
K. Morik, J.-F. Boulicaut, and A. Siebes, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 153-170.

C. N. Mavridis, G. P. Kontoudis, and J. S. Baras, “Sparse gaussian pro-
cess regression using progressively growing learning representations,”
in 2022 IEEE 615t Conference on Decision and Control (CDC). IEEE,
2022, pp. 1454-1459.

C. N. Mavridis and J. S. Baras, “Progressive graph partitioning
based on information diffusion,” in IEEE Conference on Decision and
Control, 2021, pp. 37-42.

C. N. Mavridis, A. Kanellopoulos, K. G. Vamvoudakis, J. S. Baras,
and K. H. Johansson, “Attack identification for cyber-physical security
in dynamic games under cognitive hierarchy,” IFAC-PapersOnLine,
vol. 56, no. 2, pp. 11223-11228, 2023.

C. N. Mavridis and J. S. Baras, “Identification of piecewise affine
systems with online deterministic annealing,” in 2023 62nd IEEE
Conference on Decision and Control (CDC). IEEE, 2023, pp. 4885—
4890.

C. N. Mavridis, A. Kanellopoulos, J. S. Baras, and K. H. Johansson,
“State-space piece-wise affine system identification with online deter-

(191

[20]

[21]

(22]

(23]

[24]

[25]

493
Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on May 09,2025 at 16:54:12 UTC from IEEE Xplore. Restrictions apply.

ministic annealing,” in European Control Conference (ECC). IEEE,
2024.

C. N. Mavridis and J. S. Baras, “Online deterministic annealing for
classification and clustering,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 34, no. 10, pp. 7125-7134, 2023.

K. Rose, “Deterministic annealing for clustering, compression, classi-
fication, regression, and related optimization problems,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2210-2239, 1998.

V. S. Borkar, Stochastic approximation: a dynamical systems view-
point.  Springer, 2009, vol. 48.

A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering with
bregman divergences,” Journal of machine learning research, vol. 6,
no. Oct, pp. 1705-1749, 2005.

T. Villmann, S. Haase, F.-M. Schleif, B. Hammer, and M. Biehl,
“The mathematics of divergence based online learning in vector
quantization,” in IAPR Workshop on Artificial Neural Networks in
Pattern Recognition. Springer, 2010, pp. 108-119.

C. N. Mavridis and J. S. Baras, “Convergence of stochastic vector
quantization and learning vector quantization with bregman diver-
gences,” IFAC-PapersOnlLine, vol. 53, no. 2, 2020.

V. S. Borkar, “Stochastic approximation with two time scales,” Systems
& Control Letters, vol. 29, no. 5, pp. 291-294, 1997.



