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Abstract— We investigate the problem of deceiving a mali-
cious agent employing an identification method to estimate the
closed-loop dynamics of a cyber-physical system. In particular,
we propose a moving target defense mechanism that utilizes
stochastic switching between linear closed-loop dynamics to
drive a linear system identification process of a potential
adversary to sub-optimal solutions with non-vanishing error.
We provide a statistical analysis of the induced identification
error and show that it is not possible for any linear system
identification method to reconstruct the average dynamics of
a stochastic switched linear system. Finally, we utilize the
theory of Markov jump linear systems to guarantee asymptotic
stability of the switching system, and formulate the switching
control problem as an optimization problem that guarantees
stability while taking into account the trade-off between security
and switching effort. Simulation results showcase the efficacy
of the proposed approach in inducing identification error for
the adversary using minimal switching.

I. INTRODUCTION

Cyber-physical systems (CPS) are large-scale, complex
systems where physical interfaces are tightly interconnected
with communication and computational devices [1]. A
plethora of CPS applications is found in different domains,
ranging from the health industry [2], the power grid [3] as
well as autonomous ground [4] and aerial vehicles [5]. How-
ever, the employment of CPS in safety-critical applications
is hindered by the large fault surface that their complexity
causes, and by the fact that CPS have become a prime target
for malicious agents; attackers that are able to compromise
the system either via its software or via its physical layer.

The problem of securing CPS has been addressed by vari-
ous research communities. Initially, computers scientists have
focused on developing more appropriate software defenses
for embedded critical systems [6], while similar endeavors
have been made regarding the shielding of the underlying
communication network of the system [7]. More recently,
control-theoretic tools have been proposed for analyzing and
developing defense frameworks that capture more abstract
behaviors of the system or focus on the vulnerabilities in
the cyber/physical boundary. These solutions, however, often
take a reactive approach to security, aiming to detect manip-
ulated signals and mitigate their effect to the system. On the
other hand, Moving Target Defense (MTD) approaches [8],
[9] have been proposed as a security framework that seeks
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to mitigate this asymmetry by proactively and continuously
changing the parameters of the system in order to spoof the
attacker. In this sense, MTD approaches for CPS systems
are inherently connected to switching control techniques,
which are based on alternating between different controllers,
in an adaptive context, while aiming to achieve stability
and optimize an appropriately defined performance metric
[9]–[13]. A special class of stochastic switched systems can
be modeled as Markov jump linear systems which capture
important behavioral properties and have been extensively
studied in terms of their stability properties [14], [15].

In this work, we employ MTD principles to develop
a stable switching control system, modeled as a Markov
jump linear system, that can hinder the system identification
process of a potential adversary. We provide a statistical
analysis of the induced identification error, and formulate
the optimal switching signal control problem as an optimiza-
tion problem that takes into account the trade-off between
induced identification error and switching effort. Finally,
simulation results are provided to illustrate the efficacy of
the proposed approach in inducing identification error for
the adversary using minimal switching.

A. Related Work

Secure control for CPS applications is an active research
field. Starting from [16], where the authors stressed the
importance of dynamical systems and control in CPS se-
curity, different approaches have been developed. In [17],
the authors design control sequences that aim to increase
the detectability of attacks in control systems, while from
a different point of view, the authors of [18] design control
signals that are meant to remain private, using tools from
homomorphic encryption. Using dynamical games as their
main focus, the authors in [19] design control strategies that
mitigate stealthy attacks in a receding-horizon setting.

Proactive defense approaches were initially developed by
the computer science community, with special focus on
computer networks [20]–[22]. In [23] the authors introduce
a constantly shifting IPv6 address mechanism to design a
secure internet protocol. In [24], a related proactive defense
strategy was formulated to deceive an attacker targeting
nodes in a wireless network. A more formalized approach to
MTD was first proposed in [25] and led to an MTD entropy
hypothesis framework that is more generally applicable. An
MTD approach, that is closely related our method, was
used to enlarge the dimension of the state space in [26]
for the purposes of attack detection, rather than proactive
defense based on an unpredictability measure. One possible
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mechanism for introducing unpredictability in a dynamical
system is via randomized switching devices; whether those
are sensors or actuators. This ideas were explored in [9], [10],
where the authors developed an entropy-based probabilistic
switching rule that rendered the evolution of the system
unpredictable without compromising its stability properties.
These notions were also investigated in [12], where the
authors considered also the effects of switching to the
underlying communication network of the CPS.

Finally, the problem of privacy in dynamical systems
has been extensively studied in the literature [27]. In addi-
tion, switched system identification approaches to counteract
MTD defense approaches have recently been developed
using more complex identification methods based on the
theory of online deterministic annealing [11], [28]–[31].

B. Contribution

The contribution of this paper is twofold. We first provide
a statistical analysis of the properties of linear system identi-
fication and quantify the inherent estimation error that arises
when the system to be learned utilizes stochastic switching
between different linear systems. In particular, we show that
it is impossible for any linear system identification method
to reconstruct the average dynamics of a stochastic switched
linear system. Based on this result, we make use of the
principles of Markov jump linear systems and develop an
MTD approach that utilizes switching between predefined,
and not necessary stable, linear dynamical systems, to hinder
the system identification mechanism of a potential attacker,
while maintaining stability in the mean square sense. Finally,
we formulate the problem of finding the optimal switching
strategy as an optimization problem that balances the trade-
off between the induced identification error and the switching
effort, and illustrate its efficacy in simulated experiments.

C. Notation

The sets R and Z represent the sets of real and integer
numbers, respectively, while Z+ represents the set of non-
negative integers. For a real matrix A ∈ Rn×m, AT ∈
Rm×n denotes its transpose. Unless otherwise specified, ∥A∥
denotes the Euclidean norm of A. The eigenvalue of A with
maximum real value is denoted as λ̄(A) and the associated
eigenvector v̄(A) such that Av̄(A) = λ̄(A)v̄(A). The identity
matrix dimensions n×n is denoted by In. Unless otherwise
specified, random variables X : Ω → Rd are defined in
a probability space (Ω,F,P), the probability of an event
is denoted by P [X ∈ S] := P [ω ∈ Ω : X(ω) ∈ S], and the
expectation operator as E [X] =

∫
Ω
XdP. Given two random

variables (X,Y), the expectation E [f(X,Y)] is understood as
the expectation with respect to the joint probability measure,
while E [X|Y] := E [X|σ(Y)] denotes the expectation of
X conditioned to the σ-field of Y. Stochastic processes
{X(k)}k, k ∈ Z+, are defined in the filtered probability
space (Ω,F, {Fn}n ,P), where Fn = σ(X(k)|k ≤ n),
k ∈ Z+, is the natural filtration. Finally, 1[X∈S] denotes
the indicator function of the event [X ∈ S].

D. Structure

The paper is structured as follows. In Section II we provide
a statistical analysis of linear system identification under
different assumptions. In Section III, we develop a Moving
Target Defense (MTD) framework based on the theory of
MJLS systems and formulate it as an optimization problem
for identification deception. Section IV presents simulation
results that showcase the efficacy of the approach, and,
Section V concludes the paper and discusses potential future
research directions.

II. STATISTICAL ANALYSIS OF SYSTEM IDENTIFICATION

In this section we introduce a statistical analysis that will
be used to formally justify the ability of an MTD framework
to hinder the system identification mechanisms of a potential
attacker. To simplify our analysis, we consider a random
variable X : Ω → Rd and a single-output map f : Rd ×
Rdρ → R that defines the random variable:

Y = f(X, ρ) +W, (1)

where ρ ∈ Rdρ is a parameter vector, and W ∈ R is a random
variable with E [W] = 0, E

[
W2
]
< ∞, and E [XW] =

E [X]E [W] = 0. The input-output pair of random variables
(X,Y) is used to formulate the identification problem of the
map f in (1), which reads as follows:

minimize
g∈G

L(g) := E(X,Y) [l(Y, g(X))] , (2)

where l : R × R → R+ is an appropriate dissimilarity
measure, and G is the function space that the attacker has
the ability to search for. We will assume that l(x, y) =
1
2∥x − y∥2, and that the attacker has the capacity to search
only within the space of bounded linear functions, i.e.,

G =
{
g : g(x) = θTx, ∃c > 0 : ∥θTx∥ ≤ c∥x∥

}
. (3)

We restrict to the set of bounded linear functions to showcase
the properties of the proposed approach which is based on
linear systems, for which identification results are prominent
and widely used. Under these assumptions, (2) can be written
as:

minimize
θ∈Rd

L(θ) :=
1

2
E(X,Y)

[
∥Y− θTX)∥2

]
, (4)

where with a slight abuse of notation we denote the operator
L(g)|g(x)=θTx by L(θ). The identification error L(θ) in (4)
can be decomposed as:

L(θ) =
1

2
E
[
(Y− E [Y|X])2

]
+

1

2
E
[(
E [Y|X]− θTX

)2]
.

(5)
Notice that the first term does not depend on the identifica-
tion process, and represents the uncertainty of the output
given all possible information from the input. Using (1),
the first term satisfies 1

2E
[
(Y− E [Y|X])2

]
= 1

2E
[
W2
]
. The

second term of (5) entails both the estimation and the approx-
imation error. The approximation error refers to the deviation
from the optimal parameter vector θ∗ = argminθ L(θ). The
estimation error stems from attempting to estimate E [Y|X] =

810

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on May 09,2025 at 16:59:59 UTC from IEEE Xplore.  Restrictions apply. 



f(X, ρ) by a linear function g(X) = θTX. These two types of
errors will become clear in what follows. The MTD approach
is based on maintaining high estimation error by not allowing
the attacker to know the class of functions that f(·, ρ) in (1)
belongs to.

To solve (4), we take ∇θL(θ) = 0, which gives:

∇θL(θ) = ∇θ
1

2
E
[(

E [Y|X]− θ∗TX
)2]

= 0

⇔ E
[
XXT

]
θ∗ = E [XY] .

(6)

Assuming that the covariance matrix E
[
XXT

]
is invertible,

the optimal parameter vector θ∗ is given by:

θ∗ = E
[
XXT

]−1 E [XY] . (7)

In practice, one approximates θ∗ by

θ̂ = (XTX)−1XTY, (8)

by collecting sufficiently many data samples such that
XTX = 1

n

∑n
i=1 xix

T
i ≃ E

[
XXT

]
, and XTY =

1
n

∑n
i=1 xiyi ≃ E [XY], where X ∈ Rn×d, and Y ∈ Rn×1

are matrices comprised of n realizations (observations) of
X and Y, respectively. This approach is well known in the
literature as the least-squares identification method.

The error ∥θ̂− θ∗∥2 is the approximation error and stems
from the lack of knowledge of the distribution of (X,Y)
and is directly affected by the data samples available and
the numerical methods used. However, in this work we are
mainly interested in the estimation error that results from not
knowing the class of functions G in (2), which requires the
measure-theoretic analysis presented in this section.

1) Case of Linear Systems: In this case, we make the
usual assumption that f(x, ρ) = ρTX+W which results in
the input-output map:

Y = ρTX+W. (9)

Therefore, (6) gives:

E
[
XXT

]
θ∗ = E

[
XXT

]
ρ+ E [XW] , (10)

which yields

θ∗ − ρ = E
[
XXT

]−1 E [XW] = 0, (11)

since E [XW] = E [X]E [W] = 0. In other words, when
the map to be identified belongs to G, the estimation error
∥θ∗−ρ∥2 becomes zero, and the identification method needs
only to minimize the approximation error.

2) Case of Nonlinear Systems: In the general case, (6)
gives:

θ∗ = E
[
XXT

]−1 E [Xf(X, ρ)] . (12)

An interesting case is when f is given by a linear combina-
tion of feature vectors ϕ(x) (e.g., an artificial fully-connected
neural network model), then (12) becomes

θ∗ = E
[
XXT

]−1 E [Xϕ(X)] ρ. (13)

Note that ∥θ∗ − ρ∥2 > 0 so there is a quantifiable non-
vanishing estimation error.

3) Case of Switched Linear systems: In this case, we
assume that: 

Y = ρT1 X+W, if Z = 1
...

...
Y = ρTkX+W, if Z = K

, (14)

where the random variable Z ∈ {1, . . . ,K} is independent
from X,W. Then (6) gives:

θ∗ = E
[
XXT

]−1 E

[
E

[
X

K∑
i=1

1[Z=i]X
Tρi

∣∣∣∣∣Z
]]

, (15)

which can be simplified to

θ∗ =

k∑
i=1

P [Z = i] ρi, (16)

i.e., the identification method estimates the average parame-
ter vector of the system.

Remark 1: Equation (16) implies that the error ∥θ∗ −
ρ(t)∥2 > 0 is non-vanishing at any given point in time t,
where ρ(t) =

∑k
i=1 1[Z=i]ρi. This means that the estimation

error of a potential attacker that makes use of recursive
identification methods will not converge, potentially forcing
the attacker to restart the identification attempt with more
complex methods.

Remark 1 provides the main motivation behind the use
of an MTD framework for system identification deception
which will be discussed in Remark 2 of Section III-B.

III. PROBLEM FORMULATION

In this section we design an MTD-based Markov jump lin-
ear system that can hinder the system identification process
of a potential adversary, and formulate the optimal switching
signal control problem as an optimization problem that takes
into account the trade-off between induced identification
error and switching effort.

A. Moving Target Defense and Switching Control
Consider a discrete-time linear time-invariant system

which can be controlled by one of K ∈ N actuating modes:

x(k + 1) = Ax(k) +Buσ(k)(k),

x(0) = x0, σ(0) = σ0, k ∈ Z+,
(17)

where x ∈ Rn is the state vector, ui ∈ Rm, i = 1, . . . ,K, are
control vector associated with the i−th actuator, σ : Z+ →
{1, . . . ,K} is a random process that decides the mode of
the system, A ∈ Rn×n describe the open-loop dynamics,
B ∈ Rn×m, and k ∈ Z+ denotes the time instance.

We consider a set of predefined linear feedback controllers
ui(x) = Kix, ∀i ∈ {1, . . . ,K} is available to the system
before its operation, with Ki ∈ Rm×n being the feedback
gain matrix. The actuator/controller pair utilized is decided
based on the switching signal σ(k), leading to the closed-
loop switched system:

x(k + 1) = (A−BKσ(k))x(k)

= Γσ(k)x(k),

x(0) = x0, σ(0) = σ0, k ∈ Z+,

(18)
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In the case that the switching sequence {σ(k)}k is a Markov
process, system (18) becomes a Markov Jump Linear System
(MJLS). The framework of MJLS allows for the analytic
study of the convergence of such stochastic systems and will
provide a means to construct the proposed MTD approach
for identification deception.

B. Markov Jump Linear Systems

A Markov jump linear system is a stochastic system that
can be described by the dynamics:

x(k + 1) = Γσ(k)x(k),

x(0) = x0, σ(0) = σ0, k ∈ Z+,
(19)

where x(k) ∈ Rn is the state vector, σ(k) ∈ {1, . . . ,K}
is a random variable that indicates the mode of the system,
{Γi}Ki=1, Γi ∈ Rn×n are the matrices that define the dynam-
ics for each mode of the system, and k ∈ Z+ denotes the time
instance. In particular, {σ(k)}k is assumed to be a Markov
process with transition probability matrix P ∈ RK×K , where
pij = P [σ(k + 1) = j|σ(k) = i], and

∑
j pij = 1.

In the following, we will constraint our focus to the
stability of (19) and the properties of the dynamics of its
average state. For a more complete analysis of discrete-time
MJLS systems the readers are referred to [14], [15]. Notice
that the sequence {x(k)}k of the stochastic system (19) is
not a Markov process, but {(x(k), σ(k))}k is. To study the
stability of (19), we define the first and second moments of
the state x as follows:

µ(k) := E [x(k)] =
K∑
i=1

E
[
x(k)1[σ(k)=i]

]
:=

K∑
i=1

qi(k),

Σ(k) := E
[
x(k)xT(k)

]
=

K∑
i=1

E
[
x(k)xT(k)1[σ(k)=i]

]
:=

K∑
i=1

Qi(k).

(20)
It is easy to show that the dynamics for qi, Qi, are given by:{

qi(k + 1) =
∑K

j=1 pjiΓjqj(k),

Qi(k + 1) =
∑K

j=1 pjiΓjQj(k)Γ
T
j .

(21)

In addition, we can define linear dynamics for the augmented
vectors q(k) = [qT1 (k) . . . q

T
K(k)]T ∈ RKn, and Q(k) =

[vec (Q1(k))
T
. . . vec (QK(k))

T
]T ∈ RKn2

, as follows:{
q(k + 1) = Mq(k), M =

(
PT ⊗ In

)
diag

(
{Γi}i

)
Q(k + 1) = TQ(k), T =

(
PT ⊗ In2

)
diag

({
ΓT
i ⊗ Γi

}
i

)
.

(22)
Based on the dynamics (22), we can define and test the
stability of system (19) as follows.

Definition 1 ( [14]): The MJLS system (19) is Mean
Square Stable (MSS), if there is a pair (µ,Σ) such that, for
any initial state x(0) = x0 and initial distribution σ(0) = σ0,
it holds that µ(k) → µ, and Σ(k) → Σ.

Theorem 1 ( [14]): If the system Q(k + 1) = TQ(k) in
(21) is stable, then the MJLS system (19) is mean square
stable. In addition, if µ = 0, Σ = 0, then x(k) → 0 almost
surely.

Theorem 1 provides a useful condition to test the stability
of the system (19). Moreover, it also implies that a collection

of unstable systems can be combined through appropriately
defined markov jumps to result in a stable system [14].
Although this is a useful result in control applications, we
are mainly interested in the average system that a potential
attacker can estimate by observations of the MJLS system
(19). Notice that, even though the dynamics of the augmented
vector q(k) in (22) are linear, the same does not hold for the
average state µ(k). In particular,

µ(k + 1) =

K∑
i=1

qi(k + 1) =

K∑
i=1

K∑
j=1

pjiΓjqj(k)

=

K∑
j=1

Γjqj(k) = [Γ1 . . .ΓK ]q(k).

(23)

In other words, the average state µ(k) is linear with respect
to the augmented vector q(k), but cannot be described by
linear time invariant dynamics, i.e., there exists no matrix
F ∈ Rn×n such that µ(k + 1) = Fµ(k).

Remark 2: Equation (16) implies that an identification
method with input-output observations of the system (18)
would recover, in the best case scenario, the following
dynamics:

m(k + 1) =

(
K∑
i=1

πiΓi

)
m(k), m(0) = x0, (24)

where π = [π1 . . . πK ] is the stationary distribution of the
Markov process σ(k), i.e., πP = π. However, as shown
in (23), the average state of system (18) is not described
by linear dynamics, resulting in the deception of a potential
attacker that tries to identify the system.

The observations made in Remark 2 constitute the main
motivation behind the proposed MTD approach. In fact, as
will be shown in Section IV, system (24), which is the
one that the attacker can identify, is usually not a good
approximation of the actual dynamics (23) of the average
state of system (18). In many cases, (24) can even be unstable
while the actual stochastic system (18) is mean square stable
according to Definition 1 (i.e., the average system (23) is
stable).

C. Optimization Problem

In this section we define an optimization problem to
choose the optimal transition probability matrix for the MJLS
system (18) for the proposed MTD scheme with predefined
control matrices {Ki}Ki=1. As we showed in Section III-A,
the stability of (18) can be evaluated by whether or not
the matrix T =

((
PT ⊗ In2

)
diag

({
ΓT
i ⊗ Γi

}
i

))
is Schur,

which does not imply that Γi, i = 1, . . . ,K, are Schur. The
mean square stability of (18) will be the only performance
criterion considered in this work for the defending system.
On the other hand, in Section II we showed that the iden-
tification method of the attacker can identify the dynamics
of system (24), which can even be unstable. Therefore, the
MTD approach will focus on maximizing the long-term
average the states of system (24), as stated in Problem 1:
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Problem 1:

maximize
P

1

2

∞∑
k=1

∥m(k)∥2 (25a)

s.t.
∑
i

pji = 1 (25b)

m(k + 1) =

(
K∑
i=1

πiΓi

)
m(k), m(0) = x0

(25c)

λ̄
((
PT ⊗ In2

)
diag

({
ΓT
i ⊗ Γi

}
i

))
< 1 (25d)

πP = π (25e)

In order to numerically solve Problem 1, we simplify
(25a) to maximizing the eigenvalue of the matrix dynam-
ics in (25c) with the largest real part. In addition, to
control the switching effort of the system, we make use
of the parameterization of P = P (τ) by a vector τ ∈
RK(K−1), such that each row i can be written as Pi =[
τi1 . . . τi(i−1)(1−

∑
j ̸=i τij)τi(i+1) . . . τiK

]
. In particular, a

design choice to minimize the switching probability, which
roughly correlates with less frequent switching over time,
can be implemented by the additional objective minτ ∥τ∥2,
since the diagonal elements pii = (1 −

∑
j ̸=i τij) of P are

being maximized, which implies higher probability of not
switching to a different mode. As a result, in this work, we
numerically solve Problem 2 as given below:

Problem 2:

maximize
τ

(1− T ) λ̄

(
K∑
i=1

πiΓi

)
− T ∥τ∥2 (26a)

s.t. λ̄
((
PT(τ)⊗ In2

)
diag

({
ΓT
i ⊗ Γi

}
i

))
< 1

(26b)

(1−
∑
j ̸=i

τij) ≥ 0 (26c)

πP (τ) = π (26d)

where T ∈ [0, 1] is a design parameter.

IV. SIMULATION RESULTS

We evaluate the efficacy of the proposed MTD approach
in (26) in a Markov jump linear system of the form (18)
with x(k) ∈ R2, x(0) = [1, 0.5]T, u(k) = −Kσ(k)x(k),
σ(k) ∈ [1, 2] with σ(0) = 1, and Γi = (A−BKi) given by:

x(k + 1) =

[
0.5 −0.5

−0.2 0.5

]
x(k) + w(k), if σ(k) = 1

x(k + 1) =

[
0.9 −0.1

−0.5 0.1

]
x(k) + w(k), if σ(k) = 2

(27)
The added noise term w(k) has first and second order
statistics E [w(k)] = 0, and E

[
w2(k)

]
= 1. System (27)

Fig. 1: A realization of the trajectory of system (27) against
the reconstruction of the trajectory by the attacker through
linear system identification with known initial conditions.
The switching signal is also displayed. Notice that even min-
imal switching can hinder the identification of the dynamics.

has two stable modes (K = 2) and the and the switching
signal σ(k) is a Markov process with:

P (τ12, τ21) =

[
1− τ12 τ12
τ21 1− τ21

]
(28)

The parameters τ = (τ12, τ21) = (0.69, 0.17) are computed
by numerically solving Problem 2 in a the discretized space
{0,∆τ, . . . , 1−∆τ, 1}2 with binning resolution ∆τ = 0.01.
The Lagrange parameter T was predefined as T = 0.9,
which puts more weight in minimizing the switching effort
of the controller, compared to destabilizing the behavior of
the attacker. This behavior was chosen to showcase that the
identification process of the attacker can be hindered even
with minimal switching. Figure 1 displays one realization of
the trajectory of system (27) against the reconstruction of the
trajectory by the attacker through offline least squares system
identification (equation (8)) with known initial conditions.
The switching signal is also displayed and confirms that even
minimal switching can hinder a linear identification method
over the actual dynamics.

Figure 2 displays N = 50 realizations of the trajectory
of (27), as well as the trajectory of the average state
given by (23). In contrast, the attacker is expected to be
able to identify a linear system of the form (24). Indeed,
system (24) has eigenvalues Λ = (0.9226, 0.0773), and the
attacker, through all N = 50 realizations of system (27),

identifies a linear system with eigenvalues
{
Λ̂i

}N

i=1
with

mean value µΛ = (0.9294, 0.1938), and standard deviation
σ2
Λ = (0.1087, 0.1031).

V. CONCLUSION AND FUTURE WORK

In this work, we designed a probabilistic switching scheme
for a linear dynamical system. By considering the existence
of an agent that tries to learn the dynamics of the system
through the use of a batch least squares process, our goal was
to impede the correct convergence of his learning method.
Thus, by exploiting the gap between the average dynamics
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Fig. 2: The trajectory of the average state of system (23)
against N = 50 realizations of the trajectory of system (27).

induced by the stochastic switching and the average behavior
inferred by the learner, we designed an optimization problem
that maximizes the trajectory norm of the attacker’s learned
system while simultaneously guaranteeing that the resulting
Markov Jump process that describes the evolution of the
real system remains asymptotically stable. The efficacy of
the approach was showcased by simulation studies on a 2-
dimensional dynamical system with 2 modes of operation.

Future research endeavors include the investigation of
efficient numerical solutions for Problem 2, a more compre-
hensive study of the properties of the switching mechanism
as a solution to a stochastic optimal control or a relaxed
control problem, and the extension of the proposed approach
to continuous-time dynamics. In addition, we will investigate
switched system identification approaches to counteract the
proposed MTD defense approach using stochastic switched
system identification methods based on the theory of Online
Deterministic Annealing (ODA) [11], [28]–[30].
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