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Abstract— We study the problem of approximating a model
predictive controller (MPC) with learning models to facilitate
real-time operation. In particular, we investigate how the
use of a hybrid learning model can tighten the statistical
learning bounds used for stability guarantees given by existing
robust data-driven MPC approaches. We propose a hybrid
learning framework with a finite set of state-dependent modes,
each consisting of a supervised regression model. The mode-
switching signal corresponds to a state space partition produced
by solving a homotopy optimization problem that implicitly
minimizes the Lipschitz constant of the regression model in
each mode. The cardinality of the partition is decided by a
bifurcation phenomenon, inducing a performance-complexity
trade-off that is discussed. The proposed MPC approximation
framework is validated on a nonlinear benchmark problem.

I. INTRODUCTION

Data-driven methods for system analysis and control have
gained significant popularity in recent years. However, the
adoption of these methods in control problems is not yet
attainable due to the lack of theoretical guarantees regarding
closed-loop stability, which are strongly dependent on the
data and the behavior of the learning systems used for
approximation [1].

A number of methods towards robustness and stability
guarantees of data-driven control approaches have already
been developed [1]–[5]. In particular, model predictive con-
trol (MPC) is a well-suited control framework to meet these
goals, as it can handle nonlinear system dynamics, hard
constraints, and performance criteria [6]. MPC relies on
repeatedly solving an optimal control problem based on
predicted system trajectories. However, the complexity of
this repeated process for every timestep, induces a computa-
tional cost that often renders real-time operation challenging
[6]. Therefore, approximating the resource-intensive MPC
scheme with a data-driven approximation of its control law
has received increasing attention. A few methods have been
developed to generate such approximations, including pre-
calculation of the control law in explicit MPC [7], and
learning frameworks based on supervised and reinforcement
learning [8]–[11].

However, the application of an approximate MPC con-
troller via data-driven regression models in a closed-loop
system can greatly amplify the learning errors [12]. Although
principles from robust control can be applied in the pres-
ence of approximation error [3], the fundamental limitation
remains in the quantification of its bounds [13]. The bound
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for the closed-loop error depends directly on the regression
error within the training dataset, the generalization properties
of the learning system outside the training dataset, and the
properties of the functions of the controller and the learning
model, usually quantified in the form of Lipschitz constants.
In that sense, the well-known problem of over-fitting versus
generalization is present [14]. Decreasing the regression error
requires an increase in the complexity of the learning model,
which induces poor generalization, quantified by increased
approximation error outside the training dataset and often
unnecessarily loss of smoothness, measured by an increased
Lipschitz constant for the regression model.

A. Contribution.

In this work, we propose a hybrid learning architecture to
approximate a model-predictive controller. Hybrid systems,
described by interacting continuous and discrete dynamics,
are a powerful modeling tool to approximate highly non-
linear dynamics by a collection of simpler models, enhancing
model explainability and robustness [15]–[18].

In particular, we develop a hybrid learning framework with
a finite set of state-dependent modes, each consisting of a
supervised regression model. There are no restrictions on the
regression model used, apart from Lipschitz continuity. The
mode-switching signal corresponds to a state space partition
produced by solving a homotopy optimization problem using
the Online Deterministic Annealing (ODA) approach [19],
[20]. We show that this process implicitly minimizes the
Lipschitz constant of the regression model in each mode.
In addition, the cardinality of the partition is decided by
a bifurcation phenomenon that depends on the underlying
statistics of the training dataset [21].

We show that learning with hybrid systems can reduce
the approximation error and the Lipschitz constant of the
local models (compared to a single regression model), while
providing a mechanism to determine regions of the state
space where more observations are needed. We discuss the
performance-complexity trade-off induced by the growing
cardinality of the number of modes by the optimization ap-
proach. Finally, the proposed MPC approximation framework
is validated on a nonlinear benchmark problem.

B. Structure.

In Section II we introduce the problem formulation and the
available bounds for stability guarantees for learning-based
MPC approximation. In Section III we develop the hybrid
learning framework for MPC approximation and formally
describe its properties. Finally, in Section IV we validate
our approach on a nonlinear benchmark problem.

2025 23rd European Control Conference (ECC)
June 24-27, 2025. Thessaloniki, Greece

Copyright ©2025 EUCA 2180



C. Notation.

The sets R and Z represent the sets of real and integer
numbers, respectively, while Z+ represents the set of non-
negative integers. For a real matrix A ∈ Rn×m, AT ∈ Rm×n

denotes its transpose and vec(A) ∈ Rmn the vectorization
of A. The n × n identity matrix is denoted In. A ⪰ 0 is
a positive semi-definite matrix, and the condition A ⪰ B
is understood as A − B ⪰ 0. Unless otherwise specified,
random variables X : Ω → Rd are defined in a probability
space (Ω,F,P). The probability of an event is denoted
P [X ∈ S] := P [ω ∈ Ω : X(ω) ∈ S], and the expectation
operator E [X] =

∫
Ω
XdP. In case of multiple random vari-

ables (X,Y) and a deterministic function f , the expectation
operator E [f(X,Y)] is understood with respect to the joint
probability measure, while E [X|Y] := E [X|σ(Y)] denotes the
expectation of X conditioned to the σ-field of Y. Stochastic
processes {X(k)}k, k ∈ Z+, are defined in the filtered prob-
ability space (Ω,F, {Fn}n ,P), where Fn = σ(X(k)|k ≤ n),
k ∈ Z+, is the natural filtration. The indicator function
of the event [X ∈ S] is denoted 1[X∈S] and ⊗ denotes the
Kronecker product. Finally, “min” defines the minimization
operator while “minimize” defines a minimization problem.

II. PROBLEM FORMULATION

Consider a discretized nonlinear system with no distur-
bances of the form:

xt+1 = f(xt, ut), t ∈ Z+, (1)

where {t}t∈Z+
is the time sequence, xt ∈ X ⊆ Rd the state

vector at time t, ut ∈ U ⊆ Rr the input at time t, and f : X×
U → X define the dynamics. An MPC controller {ut}t∈Z+

for system (1) with a given objective J : X×U → R+, time
horizon T , and terminal cost V : X → R+, is computed by
repeatedly solving the following optimal control problem for
every time t:

minimize
{uk}

T−1∑
k=0

J (xt+k, ut+k) + V (xt+T )

s.t. xk+1 = f (xk, uk) ,

xk ∈ Xk,

uk ∈ Uk,

∀k ∈ {0, . . . , T} .

(2)

This framework is typically computationally intensive, as a
nonlinear optimization problem is solved at each step t ∈
Z+. To bypass this limitation, by representing the implicit
feedback control law:

u∗t = κ(xt), (3)

where u∗t is the solution of (2) at time t, one can seek to
approximate the mapping κ : X → U by a regression model
κ̃ : X×Θ → U, such that:

κ(xt) = κ̃(xt, θ) + et, t ∈ Z+, (4)

where θ ∈ Θ ⊆ Rdθ is the parameter vector for the
regression model, and {et}t is the induced approximation

error sequence. The approximate feedback controller κ̃(x, θ)
can then be used in the closed-loop system, as the forward
pass of the regression model is orders of magnitude faster
than solving problem (2).

A. Approximation error bounds.

The introduction of an approximate controller κ̃(x, θ)
results in loss of any performance guarantees given by the
MPC framework. To provide any potential guarantees on
the performance of the closed loop system, there is a need
to determine a bound on the approximation error et in
(4). In the following, we introduce a standard approach to
bound the approximation error et. Variations of this approach
are standard in the related literature (see, e.g., [3]). First,
Assumptions 1 and 2 are Lipschitz conditions aiming to
bound the fluctuation rate of the functions κ(x) and κ̃(x, θ).

Assumption 1: The MPC control law defined in (3) is
Lipschitz continuous, i.e., there exists Lκ > 0 such that:

∥κ (xa)− κ (xb)∥ ≤ Lκ ∥xa − xb∥ , (5)

for all xa, xb ∈ X.
Assumption 2: The regression model defined in (4) is

Lipschitz continuous, i.e., for a any given θ, there exists
Lκ̃ > 0 such that:

∥κ̃ (xa, θ)− κ̃ (xb, θ)∥ ≤ Lκ̃ ∥xa − xb∥ , (6)

for all xa, xb ∈ X.
In addition, Assumptions 3, 4 are made on the training
dataset and learning algorithm and aim to bound the ap-
proximation error.

Assumption 3: Given a training dataset D of pairs
{(xi, κ(xi))}xi∈D, there exists an attainable solution θ∗ for
the parameters of the regression model κ̃(x, θ), such that:

∥κ(xi, θ∗)− κ̃(xi, θ
∗)∥ ≤ ϵD, ∀xi ∈ D, (7)

for an arbitrary small ϵD > 0.
Assumption 4: The training dataset D = {(xi, κ(xi))} is

dense enough within X×U, such that there exists δ > 0 for
which:

∥x− xi∥ ≤ δ, ∀xi ∈ D, ∀x ∈ X. (8)

Given Assumptions 1, 2, 3, 4, we can bound the approxima-
tion error et in (4) using the results of Theorem 1.

Theorem 1: If Assumptions 1, 2, 3, 4, hold, then the
approximation error

e(x) = κ(x)− κ̃(x, θ∗), x ∈ X, (9)

is bounded by

∥e(x)∥ ≤ (Lκ + Lκ̃)δ + ϵD, ∀x ∈ X. (10)

Proof: Choose any x ∈ X and find the representing
training vector xi such that

xi = argmin
xj

∥x− xj∥, xj ∈ D. (11)
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Then by Assumptions 1, 2, 3, and the triangular inequality
we get:

∥κ(x)− κ̃(x, θ∗)∥ =∥κ(x)− κ(xi)+

κ̃(x, θ∗)− κ̃(xi, θ
∗)+

− κ(xi) + κ̃(xi, θ
∗)∥

≤∥κ(x)− κ(xi)∥+
∥κ̃(x, θ∗)− κ̃(xi, θ

∗)∥+
∥κ(xi)− κ̃(xi, θ

∗)∥
=(Lκ + Lκ̃)∥x− xi∥+ ϵD

(12)

Finally, by Assumption 4, it holds that ∥x− xi∥ ≤ δ, which
completes the proof.

Theorem 1 gives a bound to the approximation error ∥ϵt∥
that depends on the Lipschitz constant of the dynamics Lκ, as
well as the training dataset (through δ), the training algorithm
(through ϵD), and complexity of the training model (through
Lκ̃). The knowledge of this bound for the approximate
closed-loop system:

xt+1 = f(xt, κ̃(xt, θ
∗))

= f(xt, κ(xt, θ
∗) + ϵt), t ∈ Z+,

(13)

allows for robust control approaches that guarantee bound-
edness of the system to be used [3].

However, it is important to note that the fundamental
limitation of such results is in the actual values of the
parameters Lκ, Lκ̃, δ, and ϵD. In Section III, we introduce a
hybrid learning approach to reduce Lκ̃, and ϵD, and provide
a constructive way to inform the system on the locations of
new training data that, if observed, will reduce δ, as well.

III. LEARNING WITH HYBRID SYSTEMS

A general discrete-time autonomous hybrid system can be
written in the form:{

χt = gσt
(χt, vt)

σt = ϕ(σt, χt, vt)
, t ∈ Z+, (14)

where χt ∈ S ⊆ U ⊆ Rr, vt ∈ Rd, σt ∈ {1, . . . , s}, gi :
Rr ×Rd → Rr, ∀i ∈ {1, . . . , s}, and ϕ : {1, . . . , s} ×Rr ×
Rd → {1, . . . , s}. The signal σt is called the mode-switching
signal and can take a finite number of s values that are called
the modes of the hybrid system.

We are interested in input-output regression models.
Therefore, we will work with gσt that do not depend on
χt. Moreover, we will focus on hybrid systems with state-
dependent modes. In particular, we will assume that ϕ is
given by a polyhedral partition rule of the form:

σt = i⇔ χt ∈ Si, t ∈ Z+, (15)

where {Si}si=1 define a polyhedral partition of S, i.e., Si ⊂ S
is a polyhedron in Rr for every i, Si∩Sj = ∅ for i ̸= j, and⋃

i Si = S. A hybrid regression model κ̃(xt) to approximate
the MPC scheme κ(xt) then takes the form:{

κ̃(xt) = gσt
(xt, θσt

)

σ(xt) =
∑s

i=1 1[xt∈Si] · i
, t ∈ Z+, (16)

Fig. 1: Illustration of the state-dependent switching regres-
sion model in (16). The partition {Si}si=1 of the state space S
is a polyhedral Voronoi partition induced by the parameters
{µi}si=1 and a Bregman divergence dρ.

where the parameters to be identified are the partition {Si},
the model parameter functions {gi} and vectors {θi} for each
mode i ∈ {1, . . . , s}, as well as the number of modes s. A
visual representation of the hybrid learning model (16) is
shown in Fig. 1.

A. The learning problem.

The general identification problem for a hybrid learning
system of the form (16) can be formulated as a stochas-
tic optimization problem [16]–[18] over the parameters
{s, {θi}si=1 , {Si}si=1}, as follows:

minimize
s,{θi},{Si}

E

[
s∑

i=1

1[X∈Si]dρ (κ(X), gi(X, θi))

]
, (17)

where {gi} are given parametric models, and X ∈ S repre-
sents a random variable with realizations xi in the training
dataset D. The nonnegative measure dρ is an appropriately
defined dissimilarity measure. It is clear that the optimiza-
tion problem (17) is computationally hard and becomes
intractable as the number of modes and the state dimension
increases. In particular, the number of modes s is unknown
and completely alters the cardinality and the domain of the
set of parameter vectors {θi}si=1 that represent the dynamics
of the system. In addition, a parametric representation for
the polyhedral regions {Si} should be defined.

To represent the regions {Si}, we will follow a Voronoi
tessellation approach based on prototypes [19], [20]. We
introduce a set of parameters µ := {µi}si=1, µi ∈ S, where
s is to be identified. Next we define the regions {Si} by:

Si =

{
x ∈ S : i = argmin

j
dρ(x, µj)

}
, i = 1, . . . , s.

(18)
The measure dρ is designed as a Bregman divergence such
that the Voronoi regions Σi are polyhedral. Bregman diver-
gences is a family of dissimilarity measures that includes
the squared Euclidean distance and the Kullback-Leibler
divergence. In this work, the squared Euclidean distance is
used. For more information, the reader is referred to [20],
[22]. An illustration is provided in Fig. 1.
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Problem (17) can be approximated by two stochastic
optimization problems. Assuming the number of modes s and
the partition {Si}si=1 are known, the optimization problem

minimize
{θi}

E

[
s∑

i=1

1[X∈Si]dρ (κ(X), gi(X, θi))

]
(19)

is a regression problem for each mode of the system that
can be solved with stochastic optimization methods (e.g.,
stochastic gradient descent or accelerated optimization meth-
ods, in the case of artificial neural network models gi).

Assuming {θi}si=1 are known, we seek to find an optimal
partition of the state space subject to two main criteria.
First, we need to facilitate reduced approximation error for
each learning model in (19). Second, we need to minimize
the Lipschitz constant Lgi for each mode i = 1, . . . , s. To
accommodate for both criteria, we introduce the augmented
vector:

Ψ =

[
X

κ(X)

]
∈ Σ ⊆ Rr+d, (20)

and a set of augmented prototype vectors w := {wi}si=1,
wi ∈ Σ, i = 1, . . . , s:

wi =

[
µi

ξi

]
∈ Σ, i = 1, . . . , s. (21)

Then we solve the optimization problem:

minimize
w

E

[
s∑

i=1

1[Ψ∈Σi(w)]dρ (Ψ, wi)

]
. (22)

The clustering problem (22) finds the optimal prototypes
{wi}si=1 that define a polyhedral partition {Σi}si=1 of Σ,
subject to the joint distribution of (X,κ(X)). At the same
time, the prototypes {µi}si=1 within the vectors {wi} define a
polyhedral partition of S. Notice that (22) is designed to con-
struct an optimal partition in the space of Ψ = (X,κ(X)),
which is equivalent to a piece-wise constant approximation
of the function κ(X) (defined over the partition {Si}). In
other words, solving (22), implies that the partition {Si} is
optimal with respect to constant function models gi = ci,
i = 1, . . . , s. Therefore, the partition {Si} is optimal for
regression models with zero Lipschitz constant, which means
that the regions Si are designed, according to the joint
distribution of (X,κ(X)), such that each regression model
used has minimum Lipschitz constant Lgi . Thus, solving (22)
implicitly minimizes {Lgi}.

B. Homotopy optimization.

To solve the optimization problem (22) we use a homotopy
optimization approach. We adopt the Online Deterministic
Annealing (ODA) method [19], [20], that also addresses
the question of finding the optimal number of modes s
according to a performance-complexity trade-off. The key
idea is to define a probability space over an arbitrary number
of codevectors, while constraining their distribution using a
maximum-entropy principle at different levels.

First we define a quantizer Q : Σ → Σ as a stochastic
mapping of the form:

Q(x) = wi with probability p(wi|x). (23)

Then we formulate the multi-objective optimization problem

minimize
w

Fλ(w) = (1− λ)D(w)− λH(w), λ ∈ [0, 1).

(24)
The term

D(w) = E [d (X,Q)] =

∫
p(x)

∑
i

p(wi|x)dρ(x,wi) dx

(25)
is a generalization of the objective in (22), and

H(w) = E [− logP (X,Q)]

= H(X)−
∫
p(x)

∑
i

p(wi|x) log p(wi|x) dx (26)

is the Shannon entropy. This is now a problem of find-
ing the locations {wi} and the corresponding probabilities
{p(wi|x) = P[Q = wi|X = x]}. Notice that, for p(wi|x) =
1[ϕ∈Σi(w)] and λ = 0, (24) is equivalent to (22). In that
sense, (24) introduces extra optimization parameters in the
probabilities {p(wi|x)}, and the parameter λ that defines a
homotopy Fλ. However, the use of the conditional probabil-
ities {p(wi|x)} allows for the definition of the entropy term
H , which introduces several useful properties [16], [19]–
[21], [23], [24].

The main idea of the ODA approach is to solve a sequence
of optimization problems of the form (24) with decreasing
values of λ. This process then becomes a homotopy opti-
mization method [25]. In particular, reducing the values of λ
defines a direction that resembles an annealing process [20].
This process introduces robustness with respect to initial
conditions [20], [26]. Moreover, it induces a bifurcation
phenomenon, with respect to which, the number of unique
codevectors s(λ) increases as λ decreases. Mathematically,
this occurs when the existing solution w∗ for (24) is no
longer the minimum of the free energy, as the temperature
λ crosses a critical value [19], [21].

In practice, we can detect the bifurcation points by intro-
ducing perturbing pairs of codevectors at each temperature
level λ. The perturbed codevectors will merge with their pair
if a critical temperature has not been reached and separate
otherwise [19]–[21]. The solution to (24) can be computed
using a gradient-free stochastic approximation algorithm,
given in Theorem 2.

Theorem 2 ( [19]): The sequence wi(t) constructed by
the recursive updates{

ρi(t+ 1) = ρi(t) + β(t) [p̂i(t)− ρi(t)]

σi(t+ 1) = σi(t) + β(t) [ψtp̂i(t)− σi(t)] ,
(27)

where ψt represents external input with
∑

t β(t) = ∞,∑
t β

2(t) < ∞, and the quantities p̂i(t) and wi(t) are
recursively updated as follows:

wi(t) =
σi(t)

ρi(t)
, p̂i(t) =

ρi(t)e
− 1−λ

λ dρ(xt,wi(t))∑
i ρi(t)e

− 1−λ
λ dρ(xt,wi(t))

, (28)

2183



Fig. 2: Closed-loop system evolution of (32) using approxi-
mate MPC with a neural network regression model.

converges almost surely to a solution of (24).
Notice that the dynamics of (27) can be expressed as:

∆wi(t+ 1) =
β(t)

ρi(t)

[
σi(t+ 1)

ρi(t+ 1)
(ρi(t)− p̂i(t)) + ψtp̂i(t)− σi(t)

]
,

(29)
where the recursive updates take place for every codevector
wi sequentially. This is a discrete-time dynamical system that
presents bifurcation phenomena with respect to the parameter
λ, i.e., the number of equilibria of this system changes with
respect to the value λ which is hidden inside the term p̂i(t) in
(28). According to this phenomenon, the number of distinct
values of wi is finite, and the updates need only be taken with
respect to these values that we call “effective codevectors”.

This is the number of modes used for our hybrid learning
model (16). There is a trade-off between performance and
complexity as the value of λ reduces and the number of
modes s increases. In this work, we use a termination crite-
rion and keep the minimum value λ∗ such that a predefined
minimum number of training samples xi are associated to
each region Si, i = 1, . . . , s.

C. Mitigating the jumping effect.

To mitigate the jumping behavior of the controller that
may increase the closed-loop error, one can make use of the
association probabilities

p(xi|xt) =
e−

1−l
l dρ(xt,xi)∑

j e
− 1−l

l dρ(xt,xi)
, (30)

for a constant l > 0. Thus, a weighted regression model is
constructed:

κ̃(xt) =

s∑
i=1

p(xi|xt)gi(xt, θi). (31)

IV. SIMULATION RESULTS

We evaluate the proposed hybrid learning approach for
approximate MPC on a discretized version of the actuated
inverted pendulum system, given by the non-linear dynamics:

ẋ1 = x2

ẋ2 =
u

ml2
− g

l
sin(x1 + π),

(32)

Fig. 3: Closed-loop system evolution of (32) using approx-
imate MPC with a hybrid learning model of the form (16).
The mode-switching behavior is shown.

where, x1 represents the angle of the pendulum at the
downward position, x2 = ẋ1 represents the angular velocity,
and u is the input torque. The parameters are chosen such
that m = 1 kg is the mass of the pendulum, g = 9.81 m/s2

is the acceleration due to gravity, and l = 1 m is the length of
the pendulum. The state space is defined by −2π ≤ x1 ≤ 2π
and −1 ≤ x2 ≤ 1.

The objective of the MPC is to stabilize the upper position
of the pendulum. A quadratic cost J (xt, ut) = xTt Qxt +
uTt Rut and terminal cost V (xT ) = xTTPxT , are designed,
with weights Q = P = diag(10, 1) and R = 0.1, where diag
denotes a diagonal matrix.

A dataset D consisting of |D| = 2000 randomly selected
samples in the state space was selected. The proposed
hybrid learning approach is compared to a standard re-
gression learning approach using fully connected artificial
neural networks with l = 2 hidden layers of n = 10, 10
neurons with activation function σα = tanh, trained using
the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-
BFGS) algorithm [27]. The hybrid system is of the form (16)
with gi given by an identical neural network architecture
as above. Our metrics include the average approximation
error ē = E [et] on the training dataset D, the maximum
approximation error eD on D, and the Lipschitz constant of
the regression model Lκ̃, which are directly related to the
closed-loop system guarantees through Theorem 1.

The closed-loop system evolution for a randomly selected
initial condition x0 = (1.16, 0.53) using the two different

Model Region ē eD Lκ Lκ̃

NN S .13 3.96 324.62 354.19

Hybrid

S1

S2

S3

S4

S5

S6

.0013
.037
.058
.028

.0076
.083

.039
.35

2.42
.20
.13

2.81

114.26
67.35

246.65
283.65
61.11

161.71

113.92
76.76
326.42
285.59
61.62
181.29

TABLE I: The values of ē, eD, Lκ, and Lκ̃ for the closed-
loop system (32) using different regression models for ap-
proximate MPC. The value of these values is proportional to
the approximation error bound through Theorem 1.
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approaches for MPC approximate control is shown in Fig.
2 and Fig. 3. The values of the parameters ē, eD, Lκ̃, as
well as the Lipschitz constant Lκ are shown in Table I.
The Lipschitz constants are numerically approximated and
constitute underestimates of the actual minimal constants.

A. Discussion

While in both cases, Theorem 1 can be used to mathemat-
ically establish boundedness conditions for the closed-loop
system, it is apparent in Fig. 2 and 3 that the actual value
of the bounds is crucial, as the neural network model fails
to provide a stabilizing controller, while the hybrid learning
approach succeeds. A closer examination of the parameters
in Table I, reveals that the use of a hybrid learning algorithm
of the form (16) trained using (19) and (22), can lower the
values of ē, eD, Lκ, and Lκ̃. A partition of the state space
is created such that each model gi can be trained with lower
approximation error eD and increased smoothness, quantified
by the Lipschitz constant Lκ̃. The latter is acquired by the
optimization problem (22) that finds the optimal partition
such that in every given region Si, a constant function
approximation model (zero Lipschitz constant) is optimized.

Finally, the partition of the state space given by {Si} can
be used to determine the location of new data that could
help improve the performance of the controller. In particular,
observe that in every region Si, the values of eD and Lκ̃ are
decreased compared to the neural network model. However,
the difference for S3 and S4 is not as significant. This
information can be used to require more data within these
regions, thus further reducing eD, Lκ̃, as well as δ.

V. CONCLUSION

We studied the effect of a hybrid learning model in
tightening the statistical learning bounds used for stability
guarantees given by existing robust data-driven MPC ap-
proaches. We proposed a hybrid learning framework with
a finite set of state-dependent modes, each consisting of
a supervised regression model. The mode-switching signal
corresponds to a state space partition produced by solving
a homotopy optimization problem that implicitly minimizes
the Lipschitz constant of the regression model in each mode.
The cardinality of the partition is decided by a bifurcation
phenomenon, inducing a performance-complexity trade-off.
The proposed MPC approximation framework is validated
on a nonlinear benchmark problem.
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