
Exponential TD Learning:
A Risk-Sensitive Actor-Critic Reinforcement Learning Algorithm

Erfaun Noorani∗, Christos N. Mavridis∗, and John S. Baras

Abstract— Incorporating risk in the decision-making process
has been shown to lead to significant performance improvement
in optimal control and reinforcement learning algorithms.
We construct a temporal-difference risk-sensitive reinforcement
learning algorithm using the exponential criteria commonly
used in risk-sensitive control. The proposed method resembles
an actor-critic architecture with the ‘actor’ implementing a
policy gradient algorithm based on the exponential of the
reward-to-go, which is estimated by the ‘critic’. The novelty
of the update rule of the ‘critic’ lies in the use of a modified
objective function that corresponds to the underlying multi-
plicative Bellman’s equation. Our results suggest that the use
of the exponential criteria accelerates the learning process and
reduces its variance, i.e., risk-sensitiveness can be utilized by
actor-critic methods and can lead to improved performance.

I. Introduction
The need for robust Reinforcement Learning (RL) al-

gorithms is evident from the often brittle and non-robust
(to disturbances and model perturbations) performance of
classical (risk-neutral) RL algorithms [1]. Various approaches
have been proposed to mitigate the shortcomings of clas-
sical RL algorithms; from risk-sensitive [2] and robust [3]
RL algorithms, to various postulated regularized objectives
[4], [5]. Among the various risk-sensitive objectives, the
exponential performance criterion [6] has been widely used
due to its mathematical convenience and firm theoretical
foundations rooted in the large deviation theory [7].

The underlying motivation for this RL objective comes
from the connection of risk-sensitive control to robust output
feedback control and its dynamic game formulation, which
established the robustness properties of the risk-sensitive
exponential criterion [6], [8], [9]. In our prior work, we
showed that the regularized objectives are closely related
to risk-sensitive criteria, by using the dual representation of
convex and coherent risk-measures [10]. These results further
encourage the recent interest in risk-sensitive RL which has
led to the development of more robust and efficient RL [2].

Using exponential performance criteria in a dynamic pro-
gramming formulation results in the modification of the
classical Hamilton-Jacobi-Bellman (HJB) equation to a mul-
tiplicative HJB [11]. As a result, the traditional Temporal-
Difference (TD) rule in reinforcement learning, e.g., in Q-
learning or actor-critic methods [12], which is rooted in the
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principles of the HJB equation, needs to be modified as well.
A direct approach of a Q-learning algorithm with such an
exponential objective has been suggested in [13], inspired by
the Value-Iteration algorithm for exponential criteria [11]. In
model-free policy optimization methods, however, taking the
gradient of an exponential objective is challenging due to the
nonlinearity of the exponential function. As a result, existing
approaches often bypass this computation by using heuristic
methods or making use of the known connection between
risk-sensitive and robust control [14] to approximate the risk-
sensitive optimization with a min-max robust adversarial RL
[3], [15]. In our prior work, we extended the Monte Carlo
policy gradient algorithm REINFORCE [4] and developed a
risk-sensitive Monte Carlo method based on the exponential
criteria, Risk-sensitive REINFORCE [16].

In this work, we further extend these results and propose
a temporal-difference risk-sensitive actor-critic learning algo-
rithm (see, e.g., [12], [17]) based on the exponential criterion.
In particular, an ‘actor’ model is used to implement a policy
gradient algorithm based on a function approximation of
the exponential of the reward-to-go, which is estimated and
updated by a ‘critic’ model with every observation. The
difference lies in the update rule of the ‘critic’, as it makes
use of a modified objective function that corresponds to
the underlying multiplicative HJB equation of the dynamic
programming problem. Our experimental results show that
the use of the exponential criteria accelerates the learning
process and reduces its variance, resulting in a policy method
with a higher expected return, i.e., risk-sensitivity can be
utilized by actor-critic methods and can lead to sample
efficiency and improved performance.

The rest of this paper is organized as follows: Section
II offers a summary of classical RL and defines our no-
tation. In section III, we develop our risk-sensitive actor-
critic algorithm based on the exponential criteria using a
modified temporal-difference learning rule, and provide a
game-theoretic interpretation of the robustness of the pro-
posed methodology. Section IV illustrates our experimental
results that show increased performance and reduced vari-
ance compared to risk-neutral RL algorithms. Finally, Section
V concludes the paper.

II. Risk-Neutral RL
A reinforcement learning problem is typically modeled

using a Markov Decision Process (MDP) which is repre-
sented by a tuple M=(S,A, 𝑝0, 𝑃,𝑟, 𝛾), where S and A are,
respectively, the state and action spaces. At each time-step 𝑡,
starting with the initial state 𝑠0 drawn from the distribution
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𝑝0, the agent perceives the state of the environment 𝑠𝑡
and executes an action 𝑎𝑡 . The environment transitions to
a successor state 𝑠𝑡+1 with probability 𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) given
by the kernel 𝑃. The agent receives a reward 𝑟𝑡 := 𝑟 (𝑠𝑡 , 𝑎𝑡 );
𝛾 ∈ (0,1] is a discounting factor.

The behavior of an RL agent is determined by its policy.
Here, we consider randomized policies. A (randomized)
policy 𝜋(·|𝑠) is a probability distribution over action space
given the state, which prescribes the probability of taking an
action 𝑎 when in state 𝑠. Here, we assume policies are differ-
entiable and parameterized, e.g., a neural network, 𝜋(·|𝑠𝑡 ;𝜃)
where 𝜃 ∈ R𝑑 is a vector of parameters. By following policy
𝜋, the agent generates trajectory 𝜏 (a sequence of states
and actions). The agent’s policy and the system transition
probabilities induce a trajectory distribution given by

𝜌𝜋 (𝜏) = 𝑝0

|𝜏 |−1∏
𝑡=0

𝜋(𝑎𝑡 |𝑠𝑡 ;𝜃)𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) (1)

The RL agent aims to find a policy that maximizes
some desired performance criterion during an episode. In
risk-neutral RL, the objective is to optimize some long-
run average of some desired quantity. A common example
of a risk-neutral objective in the RL literature is expected
(discounted) cumulative reward, i.e.,

max
𝜃

𝐽 (𝜃) := E𝜋𝜃

[
𝑅

]
(2)

where 𝑅 =
∑ |𝜏 |−1

𝑡=0 𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) is the trajectory’s total reward.
The expectation is taken with respect to the trajectory dis-
tribution. That is, the expectation is taken over the space
of trajectories T generated by following the policy, i.e.,
𝑠0 ∼ 𝑝0, 𝑎𝑡 ∼ 𝜋(·|𝑠𝑡 ;𝜃) and 𝑠𝑡+1 ∼ 𝑝(·|𝑠𝑡 , 𝑎𝑡 ). Risk-neutral
RL as defined above has been extensively studied [18]–[20].
Below, we present a brief overview of the most commonly
used RL algorithms that will set the base for our proposed
algorithm in Section III.

A. Policy Gradient Algorithms
Policy gradient algorithms, such as the standard REIN-

FORCE algorithm [21], are the most straightforward RL
methods, using an iterative gradient ascent to find the optimal
policy parameter

𝜃𝑡+1 = 𝜃𝑡 +𝛼 �∇𝐽 (𝜃𝑡 ) (3)

where 𝛼∈R is a step-size and is called learning rate, and�∇𝐽 (𝜃𝑡 )∈R𝑑 is an unbiased estimate of the gradient with
respect to the policy parameter 𝜃. The gradient of the (risk-
neutral) objective of (2) with respect to the policy parameters
is given by policy gradient theorem [22]

∇𝐽 (𝜃) ∝ E𝜋𝜃

[
𝑅

|𝜏 |−1∑︁
𝑡=0

∇ log𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )
]

(4)

where we use 𝜋𝜃 (𝑠):=𝜋(𝑎 |𝑠;𝜃) as a shorthand notation.
Policy gradient methods that are based on Monte Carlo
estimation of the expectation in (4) suffer from high variance.
To reduce variance, by taking advantage of the temporal

structure of the problem and causality, it can be shown that
the gradient could be re-written in terms of reward-to-go
𝑅𝑡 :=

∑ |𝜏 |−1

𝑡 ′=𝑡 𝛾𝑡
′−𝑡𝑟 (𝑠𝑡 ′ , 𝑎𝑡 ′) as follows:

∇𝐽 (𝜃) ∝ E𝜋𝜃

[ |𝜏 |−1∑︁
𝑡=0

𝑅𝑡∇ log𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )
]

(5)

Using (5), the update rule, in the standard REINFORCE
algorithm, is given by

𝜃𝑘+1 = 𝜃𝑘 +𝛼𝑅𝑡

∇𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )
𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )

. (6)

B. Using Baselines

To further reduce the variance associated with the gradient
estimations of (4) and (5), which is a must in complex
environments, various techniques have been employed. Base-
line methods are among the most common and are based
on subtracting an appropriately chosen baseline from the
reward-to-go 𝑅𝑡 to reduce the variance without introducing
bias. Using baselines, we have [1]

∇𝐽 (𝜃) ∝ E𝜋𝜃

[ |𝜏 |−1∑︁
𝑡=0

(
𝑅𝑡 − 𝑏(𝑠𝑡 )

)
∇ log𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )

]
(7)

where 𝑏(𝑠𝑡 ) is a state-dependent function. The existence of
an optimal state-dependent baseline has been shown, how-
ever, it is hard to find [23]. A common baseline in practice
is the estimate of the value function, i.e., 𝑏(𝑠𝑡 ) = 𝑉 𝜋𝜃 (𝑠𝑡 ),
where 𝑉 𝜋𝜃 (𝑠𝑡 ) := E𝜋𝜃

[𝑅𝑡 |𝑠𝑡 ]. The effect of action-dependent
baselines over state-dependent baselines is subject to debate.
As we will discuss, a particularly convenient property of
using exponential criteria is that it alleviates the need for
such approaches [10].

C. Using Function Approximation

The reward-to-go 𝑅𝑡 :=
∑ |𝜏 |−1

𝑡 ′=𝑡 𝛾𝑡
′−𝑡𝑟 (𝑠𝑡 ′ , 𝑎𝑡 ′) in (5) needs

to be approximated by Monte Carlo simulation with the
rewards 𝑟 (𝑠𝑡 , 𝑎𝑡 ) being collected over an adequately long
period of time, during which the RL agent cannot implement
any policy updates. Function approximation can be used to
estimate 𝑅𝑡 by a value function 𝑉 𝜋𝜃 (𝑠𝑡 ) :=E𝜋𝜃

[𝑅𝑡 |𝑠𝑡 ], which
can be shown to satisfy the Bellman’s equation

𝑉 𝜋𝜃∗ (𝑠𝑡 ) = E𝜋𝜃∗

[
𝑟 (𝑠𝑡 , 𝑎𝑡 ) +𝛾𝑉 𝜋𝜃∗ (𝑠𝑡+1) | 𝑠𝑡

]
(8)

where 𝑎𝑡 ∼ 𝜋𝜃∗ (·|𝑠𝑡 ).
The fact that (8) is a contraction mapping has given rise

to stochastic approximation algorithms that try to asymptot-
ically minimize the mean-squared error

min
𝜃
E𝜋𝜃

[
∥𝑟 (𝑠𝑡 , 𝑎𝑡 ) +𝛾𝑉 𝜋𝜃 (𝑠𝑡+1)−𝑉 𝜋𝜃 (𝑠𝑡 )∥2 | 𝑠𝑡

]
where 𝑎𝑡 ∼ 𝜋𝜃 (·|𝑠𝑡 ). A fact that is used by temporal-
difference RL methods that employ learning models (e.g.
neural networks [20] or other learning algorithms [24]–[26])
to learn the optimal value function.
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D. Temporal-Difference Methods
Model-free temporal-difference RL methods are mainly

represented by Actor-Critic (AC) methods. AC methods use
two learning systems (e.g., neural networks) to estimate the
optimal policy (actor) and reward-to-go (critic), given by{

𝜃𝑡+1 = 𝜃𝑡 +𝛼
(
𝑅𝑡 −𝑉 (𝑠𝑡 ;𝑤𝑡 )

)
∇𝜋𝜃𝑡 (𝑎𝑡 |𝑠𝑡 )
𝜋𝜃𝑡 (𝑎𝑡 |𝑠𝑡 )

𝑤𝑡+1 = 𝑤𝑡 − �̄�∇𝐽𝑐 (𝑠𝑡 ;𝑤𝑡 , 𝜃𝑡 )
(9)

where the function 𝑉 is parameterized with a vector of
parameters 𝑤𝑡 ∈ R𝑑

′ , and 𝐽𝑐 (𝑠𝑡 ;𝑤𝑡 , 𝜃𝑡 ) := ∥𝑅𝑡 −𝑉 (𝑠;𝑤𝑡 )∥2.
In this case, 𝑅𝑡 is given by

𝑅𝑡 := 𝑟 (𝑠𝑡 , 𝑎𝑡 ) +𝛾𝑉 (𝑠𝑡+1,𝑤𝑡 ) ≃ 𝑅𝑡

where 𝑎𝑡 ∼ 𝜋𝜃𝑡 (·|𝑠𝑡 ). The reward-to-go estimate and the form
of the objective function 𝐽𝑐 of the critic is what gives it
the name temporal-difference learning. We note that not all
actor-critic algorithms are temporal-difference methods, with
many adhering to the batch learning approach described in
Section II-A.

Special consideration needs to be given to the step sizes
{𝛼, �̄�} as their choice heavily affects the learning process.
In theory, the step sizes {𝛼, �̄�} should decrease with time
according to the theory of stochastic approximation algo-
rithms [26], [27], i.e.,

∑
𝑛𝛼(𝑛) = ∞,

∑
𝑛𝛼

2 (𝑛) < ∞, and
𝛼(𝑛)/�̄�(𝑛) → 0, a fact that is often overlooked in practice.

III. Risk-Sensitive RL

Risk-sensitive RL incorporates some notion of risk to the
agent’s objective, e.g., higher moments of the return. Of
particular interest is the exponential criterion, i.e.,

𝐽𝛽 (𝜃) := E𝜋𝜃

[
𝛽𝑒𝛽𝑅

]
, (10)

which has been well-studied in the context of risk-sensitive
control for decades. To see why the exponential criterion in
(10) incorporates risk into the objective function, one can
take its Taylor expansion which consists of an infinite sum
of higher moments of the return with diminishing weights
for small values of 𝛽, i.e.,

E
[
𝛽𝑒𝛽𝑅

]
= 𝛽+ 𝛽2E

[
𝑅

]
+ 𝛽3

2
E
[
𝑅2 (𝜏)

]
+ . . . (11)

Note that the optimization of such an objective corresponds
to the optimization of the tail of the distribution of the
return [9]. Also, one can see the incorporation of risk into
the exponential criterion, by noting that, for 𝛽 with small
magnitude, the maximization of the exponential criterion is
approximately a trade-off between the risk-neutral objective
and the variance of the return. Note that as the risk param-
eter 𝛽 approaches zero, the optimization of the exponential
objective (10) is equivalent to the risk-neutral case (2).

A. Game-Theoretic Interpretation
Theorem 1 in [10] spells out the relationship between

the risk-sensitive RL with exponential criteria and max-min
optimization. It states that for a positive risk parameter 𝛽>0

(risk-seeking), the risk-sensitive exponential criterion has a
dual representation given by

𝐽𝛽 (𝜋) = sup
𝜋

{
E𝜋

[
𝑅

]
−

1

𝛽
𝐷

(
𝜌𝜋 , 𝜌𝜋

)}
, 𝛽 > 0 (12)

and for a negative risk parameter 𝛽<0 (risk-aversion) the dual
representation is given by

𝐽𝛽 (𝜋) = inf
𝜋

{
E𝜋

[
𝑅

]
−

1

𝛽
𝐷

(
𝜌𝜋 , 𝜌𝜋

)}
, 𝛽 < 0 (13)

where

𝐷 (𝑄,𝑃) =
{
E𝑄

[
log 𝑑𝑄

𝑑𝑃

]
if 𝑄 ≪ 𝑃∞ otherwise

is the relative entropy of 𝑄 w.r.t. 𝑃 (Kullback–Leibler (KL)
divergence of probability distribution 𝑄 from 𝑃), and the
support of 𝜌𝜃 is contained within the support of 𝜌𝜃 , that is
to say, 𝜌𝜃 is absolutely continuous with respect to 𝜌𝜃 .

In this sense, a risk-averse agent with exponential criteria
tries to maximize over the policy class in (12) and (13), and
implicitly plays a non-cooperative game against “nature" (a
hypothetical second player). The KL divergence 𝐷 (𝜌𝜋 , 𝜌𝜋)
defines a measure of how much the adversary player, control-
ling 𝜌𝜋 , can deviate from the current policy distribution 𝜌𝜋 .
The parameter 𝛽 determines the weight of the KL divergence
term, as well as the nature of the game which depends on
the sign of 𝛽.

B. Risk-Sensitive Policy Gradient
In [16], we recently proposed a risk-sensitive policy gradi-

ent algorithm, called Risk-Sensitive REINFORCE. This is a
Monte Carlo algorithm, similar to REINFORCE, that seeks
to find the optimal policy for exponential criteria with the
update rule

𝜃𝑡+1 = 𝜃𝑡 +𝛼𝛽𝑒𝛽𝑅𝑡
∇𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )
𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )

(14)

Remark 1: Note that the update rule is not proportional
to the reward-to-go 𝑅𝑡 :=

∑ |𝜏 |−1

𝑡 ′=𝑡 𝛾𝑡
′−𝑡𝑟 (𝑠𝑡 ′ , 𝑎𝑡 ′), but to the

exponential

𝛽𝑒𝛽𝑅𝑡 = 𝛽

|𝜏 |−1∏
𝑡 ′=𝑡

exp{𝛾𝑡 ′−𝑡 𝛽𝑟 (𝑠𝑡 ′ , 𝑎𝑡 ′)} (15)

which is a significant difference as shown in (11). Positive
and negative risk parameter 𝛽 result in a risk-seeking and
risk-averse behaviour, respectively.

Remark 2: By substituting the exponential with its Taylor
series expansion, shown in (11), the risk-sensitive objective
can be understood to provide a natural baseline (Section II-
B). This has been shown in [16] and holds for the temporal-
difference case (Section IV) as well. Such a baseline will be
empirically shown to lead to considerable variance reduction
and acceleration of learning.

While the reward-to-go term 𝛽𝑒𝛽𝑅𝑡 can be approximated
by Monte Carlo simulation with the rewards being collected
over an adequately long period of time, this update rule
is not appropriate for online updates, i.e., when the policy
is updated with each observation. In the next section, we
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introduce an online actor-critic algorithm that simultaneously
estimates the reward-to-go and updates the current policy.

C. Risk-Sensitive Temporal-Difference RL

To develop a risk-sensitive temporal-difference RL algo-
rithm, we use two learning systems (e.g., neural networks) to
estimate the optimal policy (actor) and reward-to-go (critic),
similar to Section II-D. According to the objective function
𝐽𝛽 in (10), we define the risk-sensitive value function of a
policy 𝜋 as

𝑉 𝜋
𝛽 (𝑠𝑡 ) := 𝛽E

[
𝑒𝛽

∑∞
𝑙=𝑡 𝛾

𝑙−𝑡𝑟 (𝑠𝑙 ,𝑎𝑙) |𝑠𝑡
]
, 𝑎𝑙 ∼ 𝜋(·|𝑠𝑙) (16)

We further define:

�̄� 𝜋
𝛽 (𝑠𝑡 ) :=

1

𝛽
𝑉 𝜋
𝛽 (𝑠𝑡 ) = E

[
𝑒𝛽

∑∞
𝑙=𝑡 𝛾

𝑙−𝑡𝑟 (𝑠𝑙 ,𝑎𝑙) |𝑠𝑡
]

(17)

where 𝑎𝑙 ∼ 𝜋(·|𝑠𝑙) and by definition, �̄� 𝜋
𝛽
(·) ≥ 0. The following

relationship holds:

𝑉∗
𝛽 (𝑠𝑡 ,𝑤𝑡 ) = max

𝑎
𝑒𝛽𝑟 (𝑠𝑡 ,𝑎)E

[
𝑒
(𝑉∗

𝛽
(𝑠𝑡+1 ,𝑤𝑡 ))𝛾 | 𝑠𝑡

]
. (18)

The following actor-critic learning approach can be con-
structed:{

𝜃𝑡+1 = 𝜃𝑡 +𝛼 |𝛽 |
(
𝑅
𝛽
𝑡 − �̄�𝛽 (𝑠𝑡 ;𝑤𝑡 )

) ∇𝜋 (𝑎𝑡 |𝑠𝑡 ;𝜃𝑡 )
𝜋 (𝑎𝑡 |𝑠𝑡 ;𝜃𝑡 )

𝑤𝑡+1 = 𝑤𝑡 − �̄�∇𝐽𝑟 (𝑠𝑡 ;𝑤𝑡 , 𝜃𝑡 )
(19)

where 𝑅
𝛽
𝑡 = exp

[
𝛽𝑟 (𝑠𝑡 , 𝑎𝑡 ) +𝛾 ln�̄�𝛽 (𝑠𝑡+1;𝑤𝑡 )

]
, and

𝐽𝑟 (𝑠𝑡 ;𝑤𝑡 , 𝜃𝑡 ) = ∥𝑒𝛽𝑟 (𝑠𝑡 ,𝑎𝑡 )+𝛾 ln �̄�𝛽 (𝑠𝑡+1;𝑤𝑡 ) − �̄�𝛽 (𝑠𝑡 ;𝑤𝑡 )∥2.

Note that 𝑎𝑡 ∼ 𝜋𝜃𝑡 (·|𝑠𝑡 ). In contrast to the risk-neutral case,
here

𝑅
𝛽
𝑡 = exp

[
𝛽𝑟 (𝑠𝑡 , 𝑎𝑡 ) +𝛾 ln�̄�𝛽 (𝑠𝑡+1;𝑤𝑡 )

]
.

This recursion is not a fixed-point iteration but rather a
stochastic gradient descent scheme. The remarks on the
stepsizes {𝛼, �̄�} hold similarly to Section II-D. The following
remarks are also important.

Remark 3: Note that the update rule in (19) is now based
on minimizing the objective function

min
𝑤
E
[
∥𝑒𝛽𝑟 (𝑠𝑡 ,𝑎𝑡 ) (�̄�𝛽)𝛾 (𝑠𝑡+1;𝑤)− �̄�𝛽 (𝑠𝑡 ;𝑤)∥2 | 𝑠𝑡

]
, 𝑎𝑡 ∼ 𝜋𝜃𝑡

This is significant in two ways. First, because of the prop-
erties explained in Remark 1. Secondly, this implies that
(19) uses a modified update rule that complies with the
multiplicative Bellman’s equation [11].

Remark 4: Note also that simply minimizing the error
∥𝛽𝑒𝛽𝑟 (𝑠𝑡 , 𝜋𝜃𝑡 ) +𝛾𝑉 𝜃𝑡 (𝑠𝑡+1;𝑤)−𝑉 𝜃𝑡 (𝑠𝑡 ;𝑤𝑡 )∥ is not equivalent
to the above update rule, but it is rather equivalent to scaling
the initial rewards 𝑟𝑡 to 𝛽𝑒𝛽𝑟𝑡 . This would result in the
substitution of the product term with a summation in (15),
as found in classical RL approaches.

IV. Experiments
To evaluate the effectiveness of the risk-sensitive temporal-

difference RL algorithm proposed in Section III-C, we
compare it against the standard temporal-difference actor-
critic algorithm on two classic RL problems, namely the
inverted pendulum (Cart-Pole) and the underactuated double
pendulum (Acrobot).

We model the actor and the critic models as single-layer
fully connected neural networks of ℎ = 16 neurons for Cart-
Pole and ℎ = 64 neurons for the Acrobot system. ReLU
activation functions and Adam optimization updates are used.
The objective functions to be optimized are as defined in
Section III-C. The best performing learning rates within
the set {0.0001,0.0003,0.0005,0.0007,0.001} are used. The
same hyper-parameters, e.g., discount factor of 𝛾 = 0.99, are
used across all algorithms.

A. Inverted Pendulum (Cart-Pole)
The Cart-Pole problem is the classical inverted pendulum

control problem, in which the agent is tasked to balance a
pole mounted on a moving cart by an un-actuated joint. The
state variable of the cart-pole system has four components
(𝑥, 𝜃, ¤𝑥, ¤𝜃), where 𝑥 and ¤𝑥 are the position and velocity of
the cart on the track, and 𝜃 and ¤𝜃 are the angle and angular
velocity of the pole with the vertical. The action space
consists of an impulsive “left” or “right” force {−10,+10}N
of fixed magnitude to the cart at discrete time intervals.
A reward of 𝑟𝑡 = +1 is given for each time-step 𝑡 that the
pole kept balanced. An episode terminates successfully after
𝑁𝑡 = 200 time-steps and the average number of time-steps
𝑁𝑡 ≤ 𝑁𝑡 (as well as its variance) across different attempts, is
used to quantify the performance of the learning algorithm.
Failure occurs when |𝜃 | > 12◦ or when |𝑥 | > 2.4m. .

We train the agent for 𝑛𝑒 = 2000 episodes and test the
learned policy in an additional 𝑛𝑒 = 1000 testing episodes.
Average rewards, 90% confidence intervals, and Conditional-
Value-at-Risk (CVaR) values at 10% across different runs are
shown in Fig. 1. CVaR values with respect to the reward
random variable 𝑅 are defined by:

𝐶𝑉𝑎𝑅𝑝 (𝑅) = E
[
𝑅 |𝑅 ≤ 𝑉𝑎𝑅𝑝 (𝑅)

]
where 𝑝 (here 𝑝 = 0.1) denotes the confidence interval and
the Value-at-Risk 𝑉𝑎𝑅𝑝 (𝑅) = inf{𝑟 ∈ R : 𝑃(𝑅 ≤ 𝑟) > 𝑝} is
the 𝑝-quantile of the reward.

The training behavior of the risk-neutral algorithm against
the proposed risk-sensitive approach for 𝛽 = +0.001 and
𝛽 = −0.001 are compared in Fig. 1. Both risk-sensitive
approaches are able to learn a policy with an average
training reward close to 𝑁𝑡 ≃ 200 over independent runs,
outperforming the risk-neutral approach. More importantly,
the CVaR values (the higher the better) indicate that the
risk-sensitive approach yields lower performance variability,
which translates to robustness in the testing phase.

In Fig. 2, we train the risk-neutral agent over a total of
5000 steps, which increases its average reward performance.
This implies that the risk-sensitive approach is more sample
efficient as it converges faster (less observations) to a robust
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Fig. 1: Training and testing behavior of a risk-neutral agent, a risk-seeking agent with a risk parameter 𝛽 = 0.001, and a
risk-averse agent with a risk parameter 𝛽 = −0.001 in the Cart-Pole problem. Average reward over 10 random runs with
90% confidence intervals are depicted. CVaR values (at 10%) of the policies during testing are also shown.

Fig. 2: Training and testing behavior of a risk-neutral agent
trained over 5000 episodes. Average reward increases, but
CVaR values (at 10%) do not.

Fig. 3: CVaR (at 10%) values of RL policies for different
risk-sensitive parameters 𝛽.

policy. Moreover, the CVaR value of the risk-neutral policy
appears to stay the same, indicating that reliability of the
risk-neutral policy is inherent in the optimization approach
and does not necessarily improve with more training.

Finally, in Fig. 3, we compare the performance and robust-
ness (CVaR values) of the proposed risk-sensitive approach
for different values of the risk parameter 𝛽.

B. Acrobot

The Acrobot problem is a double pendulum, with the joint
between the two pendulum links being actuated and the other
joint being un-actuated. The state variable of the acrobot sys-
tem has six components (cos𝜃1,cos𝜃2, sin𝜃1, sin𝜃2, ¤𝜃1, ¤𝜃2, ),
where 𝜃1 is the angle of the first link with respect to
the vertical axis (facing downwards) and 𝜃2 is the relative
angle of the second link with respect to the first link. The
action space consists of a torque of {−1,0,+1}Nm of fixed
magnitude applied to the actuated joint between the two
links. A reward of 𝑟𝑡 =−1 is given for each time-step that the
double pendulum has not reached a given height. Note that
the reward structure in the Acrobot environment is always
negative. An episode is terminated after 𝑁𝑡 = 200 time-steps
when the pendulum has not reached the given height.

We train the agent for 𝑛𝑒 = 2000 episodes and test the
learned policy in an additional 𝑛𝑒 = 1000 testing episodes.
The average rewards and their CVaR values across different
runs are shown in Fig. 4 for the risk-neutral algorithm and
the proposed risk-sensitive approach for 𝛽=0.1 and 𝛽=−0.01.
Similar to the cart-pole problem, Fig. 4 shows the average
reward over 10 random seeds with 90% confidence intervals
for the Acrobot environment. CVaR values (at 10%) of
the policies during testing are also shown. The risk-averse
approach yields better performance in terms of CVaR value
of the test runs and converges faster compared to the risk-
neutral method. The risk-seeking approach (𝛽 > 0) is still
shown to converge faster than the risk-neutral method, but
does not outperform it in terms of CVaR values at 10%.
Note that, it is not expected that a risk-seeking approach
will yield higher CVaR values at 10%. By definition, the
risk-seeking behavior aims to maximize for the right tale of
the distribution, e.g., the CVaR value at 90%.

These experimental results are consistent with the theory
described in Section III and indicate that sufficiently close
to zero values of 𝛽 put a significant enough weight on the
importance of maximization of the expected value and lead to
learning of a policy with high expected return and reduced
variability, which leads to acceleration in learning, sample
efficiency, and improved robustness.
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Fig. 4: Training and testing behavior of a risk-neutral agent, a risk-seeking agent with a risk parameter 𝛽 = 0.1, and a
risk-averse agent with a risk parameter 𝛽 =−0.01 in the Acrobot problem. Average reward over 10 random runs with 90%
confidence intervals are depicted. CVaR values (at 10%) of the policies during testing are also shown.

V. Conclusion
We develop an actor-critic risk-sensitive reinforcement

learning algorithm using the exponential criteria commonly
used in risk-sensitive control. The ‘actor’ implements a
policy gradient algorithm based on a function approxima-
tion of the exponential of the reward-to-go, estimated by
the ‘critic’ based on the multiplicative Bellman’s equation
associated with risk-sensitive dynamic programming. Our
results suggest that risk-sensitivity can be utilized by actor-
critic methods and can accelerate the learning process and
reduce its variability. Ongoing work focuses on quantifying
the robustness of the proposed approach with respect to
disturbances and model perturbations that can lead the way
towards robust reinforcement learning algorithms suitable for
real-life robotics and cyber-physical systems applications.
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