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Abstract— Highway on-ramp merge junctions remain a ma-
jor bottleneck in transportation networks. However, with the
introduction of Connected Autonomous Vehicles (CAVs) with
advanced sensing and communication capabilities modern al-
gorithms can capitalize on the cooperation between vehicles.
This paper enhances highway merging efficiency by optimally
coordinating CAVs in order to maximize the flow of vehicles
while satisfying all safety constraints. Focus is also placed on the
effect of varying priorities of different vehicle classes in selecting
the best merging sequence. Our algorithm is capable of real
time operation through parallel computation, optimized merge
sequence generation and management of the diverse needs of
heterogeneous (multi-class) traffic. Results are verified through
a realistic traffic simulation software.

I. INTRODUCTION

Highway on-ramps still remain one of the biggest causes
of traffic in modern highways. Due to the lack of coordina-
tion and limited visibility among vehicles, it is very common
to see a traffic buildup around highway on-ramps [1]. The
delays caused at on-ramps are some of the major contributors
to overall system efficiency degradation [2]. In periods of
high demand, the effect of slow moving vehicles attempting
to merge into a stream of fast moving vehicles creates a
bottleneck that often leads to traffic buildup in a large radius
around the merge junction. Solving this problem requires
vehicles to cooperate with each other and create gaps to
enable smooth merging at high speeds [3]. This unfortunately
is extremely difficult to achieve with human driven vehicles.
However, with the advent of CAVs a lot more information
has been made available for improving this overall process.

Modern CAVs have improved 360◦ local sensing with
on-board sensors such as Lidar, radar and camera systems.
Furthermore, advancements in networking technologies like
5G have led to significant improvements in Vehicle to Vehicle
(V2V) and Vehicle to Infrastructure (V2I) communication
capabilities, even beyond the point discussed in [4]. Overall
latency or delays in networks have been reduced and the
bandwidth available for data communication has increased.
Due to this, recent research has focused on solving the
merging bottleneck by harnessing the cooperation capability
of CAVs.

The general highway merging problem can be divided into
two stages. The selection of the optimal merging sequence
(order in which to merge) and controlling the actuation of all
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the vehicles in order to achieve the selected sequence. Se-
quence selection can become very difficult, as the number of
possibilities grows exponentially with the number of vehicles
involved. Another consideration in the merging problem is
the challenges introduced by the presence of heterogeneous
traffic. Different types of vehicles may prioritize different
aspects such as speed maximization or minimization of ac-
celeration and deceleration tasks. For example an emergency
vehicle will prioritize speed. Therefore, a practical controller
for solving the merging problem should be capable of finding
an optimized solution in real time while considering the
varying needs brought about by mixed traffic.

Literature review

The problem of improving the throughput in highway
merge junctions has been evolving with the advent of new
technologies. Prior to the introduction of CAVs, most work
was focused on ramp metering strategies [5], which decide
how many vehicles can merge [6], but don’t consider the
micro-simulation aspects of the merging process. However,
as vehicles became more advanced with improved sensing,
decision making and communication capabilities, we now
see a lot of effort placed on improving the merge process by
taking advantage of the cooperativeness between connected
vehicles. These efforts are often categorised either as rule
based methods or optimization based methods.

Rule based methods attempt to obtain near-optimal solu-
tions with minimal computation cost. Some initial work on
a zip based method where vehicles take turns in merging
is presented by Sarvi and Kuwahara [7] and Scarinci et al.
[8]. The work by Awal et al. [9] and more recently Ding
et al. [10] showcase the improvements cooperation between
vehicles can provide. While these algorithms are capable of
real time operation the result is usually non-optimal. There
is no guarantee that the optimal sequence is found among
the merging sequences generated, and it is difficult to model
the interaction between vehicles.

The optimization based methods aim to overcome this and
obtain the optimal merge sequence and optimal control for
all vehicles near the merge junction. However, this process
generally has a very high computation cost. Most existing
methods aim to circumvent this problem using different
types of assumptions. The work by Rios-Torres et al. [11],
[12] demonstrate how the unconstrained optimization prob-
lem can be solved in real time with Hamiltonian analysis.
However, when the full constrained problem incorporating
collision constraints is considered the method presented can-
not be used. Optimization is restricted to one ramp vehicle
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and one mainline facilitating vehicle in the work by Zhou
et al. [13]. Research by Chen et al. [14] attempts to solve
the constrained problem using a two level Mixed Integer
Quadratic Programming (MIQP) optimization formulation.
However, this is very computationally costly and cannot be
solved in real time. In fact they only compute sequences with
one ramp vehicle for a very short time duration. This same
problem is faced by other optimal control based approaches
such as Li et al. [15].

Another interesting approach to formulating this merging
problem is the virtual slot based approach [16]. Here a
central controller creates virtual slots on the highway which
each vehicle is then allocated to. This allows vehicles to
be controlled centrally by controlling the slot parameters.
This type of formulation performs poorly in the presence of
mixed traffic and also does not provide an optimal solution
to maximizing merging throughput. A similar virtual vehicle
concept is also introduced by Uno et al. [17]. While all
cooperative merging algorithms require some form of vehicle
to vehicle or infrastructure communication, the work by Ito
et al. [18] shows how the communication overhead can be
reduced by using different broadcast strategies.

Contribution

Because of the nature of the highway merging problem,
rule-based methods tend to yield sub-optimal solutions while
methods based on end-to-end optimization are, by definition,
computationally expensive and can hardly be used in real
time. Moreover, the existing methods make the assumption
of homogeneous traffic, while the potential additional com-
plications of mixed/heterogeneous traffic conditions have not
been adequately studied.

The main contribution of this work is to ameliorate both
these issues by creating a real time operation capable hy-
brid rule and optimization based merging algorithm with a
parallel computation design. This hybrid approach leads to
better performance without sacrificing real time computa-
tion capabilities. This also allows the solution provided by
the algorithm to be improved depending on the available
computation resources. The varying requirements of different
classes in heterogeneous traffic are handled by incorporating
the concept of individual vehicle priorities into the optimiza-
tion formulation.

Finally, the algorithm is tested on a realistic traffic sim-
ulator under varying traffic conditions, and the results and
comparisons are presented. We show that our method leads
to improved traffic performance metrics, such as higher
throughput, lower density, reduced delay and increased fuel
efficiency.

II. PROBLEM DEFINITION

In this section we formally define the fully automated
highway merging problem as a large optimal control prob-
lem, and show that, by decomposing it in to two simpler
decoupled optimization problems, which employs a parallel
computation architecture, a near-optimal solution can be
computed in real time.

A. Modelling the physical system

Consider the abstracted model of a highway on-ramp
as shown in Fig. 1. We define a control zone, where all
vehicles in this zone communicate with a central controller
(V2I communication) and each other (V2V communication)
to decide individual optimum velocities and paths to be
followed. The control zone encompasses both the main road
and on-ramp. We denote the number of vehicles in the control
zone by n, with m vehicles located in the mainline, and
r = n−m located on the on-ramp. Vehicles are allowed to
merge from the on-ramp onto the main road in the merge
zone, which is located at the end of the control zone.

Fig. 1: On-ramp Merging Regions and Infrastructure Model

In practice, the actual dynamics of the vehicles are
unknown and highly non-linear, and, therefore, cannot be
accurately modeled by the solver. In this regard, we assume
that the low-level control of a vehicle is managed by a
local controller wi, which is also responsible for the control
of lateral motion that keeps the vehicle in lane. Therefore,
the vehicle can be modelled as a point mass moving along
the center of the lane according to a non-linear differential
equation:

ṡi = f(t, si, wi), si(t
0
i ) = s0

i (1)

where t0 is the time the vehicle enters the control zone.
Throughout this manuscript, si(t) will be measured as the
distance of the vehicle i from the merge zone. Therefore, we
can define the high-level vehicle dynamics by the following
velocity control scheme:

ṡi = vi

vi(t) = ui(t)
(2)

where si(t), and vi(t) denote the position and velocity of
each vehicle i, respectively, along the direction of the lane,
for i ∈ {1, . . . , n}.

Remark 1: The control input ui(t) is the command ve-
locity for vehicle i. It is necessary that the target set by
this control is reachable by the low-level vehicle controller
wi and system (1). It is understood that, since ui will be
the solution of the optimal merging problem, it should be
designed to guarantee safe operation under small delays
induced by the dynamics in (1).

In addition to si(t) and vi(t), we assign a priority value
pi ∈ R2

+ to each vehicle i, which affects the merging
decision, and an indicator variable bi ∈ {0, 1} which signifies
whether the vehicle is on the on-ramp or the mainline. The
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priority value has two scalar components, speed prioritization
(pis) based on the focus placed on vehicle velocity and
speed variation prioritization (piv) based on the tolerance
to changes in velocity. For each vehicle we also obtain its
length li, and bounded acceleration capabilities characterized
by its maximum acceleration amax and maximum braking
amin capabilities, which carry information about lower-level
variables such as the mass of the vehicle. Therefore, all
cars are connected autonomous vehicles (CAVs) completely
defined by the state vectors:

xi(t) = [si(t), vi(t), p
i, bi, li, aimax, a

i
min]T (3)

for i ∈ {1, . . . , n}. Lastly, regarding the parameters of the
main road and the on-ramp, we assume speed limits v̄m and
v̄r, respectively, and we denote their length of the control
zones by Lm and Lr. Without loss of generality, we will
assume in this work that v̄m = v̄r = v̄, a constant value that
can be decided by the designer. The constant parameter tuple
Ms = {Msr,Msl}, which denotes a safety margin between
two vehicles, is also defined, and can be chosen by the
designer. Here, Msr and Msl represents the safety margins
needed to prevent rear-end collisions and lateral collisions
respectively.

B. Optimal merging control formulation

The highway merging problem, can be formulated as
an optimal control problem, where the goal is to estimate
the optimal command velocities ui for all i ∈ {1, . . . , n},
according to an appropriately defined objective function.
Essentially, we want to minimize the time it takes for all
vehicles to merge, which can be written as a minimization
of the merging time of the last vehicle to be merged:

min
{ui}

max
i

tif

s.t. C({xi}, v̄, Lm, Lr,Ms)
(4)

where tif ∈ arg minτ{si(τ) = 0} is the merging time of
vehicle i. The set C is a set of constraints, to be defined later,
that depend on the state vectors {xi} of the vehicles, equation
(2), and the parameters introduced in Section II-A. Based
on the CAV assumption, near an optimal configuration, we
expect that all the velocities vi(t) will be close to the limit v̄.
Thus, we can expect a near-optimal solution to the minimum-
time optimization problem (4) by solving:

min
{ui,q}

n∑
i=1

pisλ(ui − v̄)2 + piv(1− λ)(ui − vi)2

s.t. C({xi}, v̄, Lm, Lr,Ms, q)

(5)

The first term of the new objective function tries to keep
the velocity command as close to the speed limit as possible,
since higher velocities result in shorter merging times. The
second term refers to Remark 1, and acts as a regularization
term, penalizing a fast change in the velocity command ui
with respect to the current velocity of the car. Lastly, pis and
piv correspond to the priority values explained below and
define a heterogeneous traffic model. We note that this new
objective function consists of a weighted sum that yields a

Pareto optimal point with respect to the parameter λ which
can be chosen by the designer.

However, the optimization problem (5) is still practically
intractable, since the set C contains constraints with respect
to the order of the vehicles in their respective queues in
the two lanes. Observe that the solution to the optimal
control problem (5), also yields the optimal sequence q∗

with respect to which the vehicles should merge. This makes
it a mixed-integer optimization problem which is typically
solved by solving (5) over all possible merging sequences
q after exhaustive search. This essentially decouples the
two problems of generating a sequence, and finding the
optimal velocity commands ui. However, the total number of
possible sequences q grows exponentially with the number of
vehicles in the control zone. As iterating through such a large
number is impossible in a real time applications, in the next
section we propose a heuristic approach to search inside the
sequence space. This approach can reduce the computational
complexity by orders of magnitude, while the complexity-
performance trade-off can be controlled by the designer with
respect to the computational power of the system. We also
transform the remaining optimization problem to a set of
quadratic programming problems, one for each generated
sequence, that can be solved in parallel and in real time.

III. REAL-TIME PRIORITY-BASED HIGHWAY MERGING

The implementation of a fully automated highway merge
system can be decomposed into two major tasks: (a) the
selection of the optimal merging sequence in which vehicles
should merge, and (b) the implementation of this merging
sequence by controlling each individual vehicle.

The initial task of the centralized controller is the alloca-
tion of a unique ID to all vehicles entering the control zone.
This ID takes values between 1 and N , where N is the
maximum number of vehicles that can fit inside the control
zone. The vehicles are then added to either the mainline
queue or the on-ramp queue.

A. Priority assignment

Most algorithms found in the literature, treat all vehicles
as equal in the merging process and use methods such as
first in first out (FIFO) to decide the merging sequence.
However, this approach is sub optimal and performs very
poorly in the presence of heterogeneous traffic. This is further
complicated, since, different vehicles should be assigned
different priorities based on multiple factors such as:
• Vehicle type, size and mass
• Emergency vehicle
• On ramp or main line vehicle
• Current speed
• Vehicle’s future intent

Some examples of this are as follows. A loaded heavy 16
wheeler truck on the highway should not be forced to slow
down drastically to enable an on-ramp vehicle to merge.
Vehicles should give way to emergency vehicles. A vehicle
intending on taking the next off-ramp can be slowed to enable
other vehicles to merge in front.
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To handle these requirements, prior to the optimization
stage which selects the optimal merging sequence, a priority
assignment node updates all the priority values of the vehi-
cles in the control zone. The algorithm considers two types
of priority values for every vehicle:

1) Speed Prioritization (pis)
2) Speed Variation Prioritization (piv)

Speed priority is concerned with how much a vehicle desires
to maximise it’s own speed. In mixed traffic this is especially
important for emergency vehicles. On the other hand Speed
Variation priority is based on the vehicles deterrence to
change it’s current velocity. While emergency vehicles would
not mind sacrificing speed variation to gain higher speed
the opposite is true for trucks since a high speed variation
would involve incurring a high fuel cost. The steps used in
updating these priorities are as follows. Each vehicle class
has a baseline speed priority and variation priority value.
This value is then adjusted depending on the vehicles current
speed, whether its on the mainline or not and whether it has
been waiting in the queue for a long time. This modification
in priority depending on vehicle delay acts as a fairness factor
to ensure that even low priority vehicles will get a chance
to merge eventually. Finally, an adjustment for the flow over
effect caused by high priority vehicles is made. This effect
involves increasing the priority of all vehicles ahead of a high
priority vehicle in a single line queue. This ensures that the
high priority vehicle will not be slowed down too much by
low priority vehicles ahead of it in the queue.

B. Optimal sequence generation

When deciding the best sequence in which to merge
highway traffic the total number of possible sequences grows
exponentially with the number of vehicles in the control
zone. For example in the practical case with n = 30 vehicles
(m = 15 mainline and r = 15 ramp) in the control zone
the number of possible sequences is (m+r)!

m!r! = 155117520.
As iterating through such a large number is impossible in a
real time application, this approach starts at a initial seed
sequence based on time to merge and computes pertur-
bations to this sequence depending on available compute
power. Once we have a good selection of sequences to
check, then our problem reduces to choosing which of
these possible sequences provides the best performance.
Therefore, our algorithm will analyze all possible vehicle
inputs in order to make the optimal selection. In order to
do this we need to calculate the optimal vehicle control
input (acceleration/deceleration) needed by each vehicle to
achieve each desired merge sequence. This calculation of
inputs for all of the vehicles in the control zone for a specific
merge sequence is formulated as a quadratic programming
optimization problem.

In the process of generating the possible sequences which
the optimizer needs to compare, we find that the number
of possible highway merge sequences is limited due to two
factors. The length of the control zone which decides the
maximum number of vehicles in the sequence and the re-
quirement for order in individual lanes which means mainline

vehicles can’t overtake other mainline vehicles and the same
is true for ramp vehicles. Using this fact, in this algorithm, a
sequence is formed by injecting the on-ramp vehicles into the
string of mainline vehicles. There are two extreme scenarios
that are considered when injecting ramp vehicles into the
main line vehicle queue. The first criterion is time to merge
(TTM) (tM ) which takes into account the vehicles speed
and position. In this criterion, slow moving vehicles may be
allocated to the end of the sequence even though they are
close to the merging point. The other criterion is distance to
merge (DTM) (dM ). Here, vehicles moving fast will need to
slow down in order to allow a slow moving vehicle closer
to the merging point to merge. We find that the optimum
sequence lies in between these two extremes. Therefore, this
algorithm follows a scalarization approach, and performs a
trade-off analysis between DTM and TTM controlled by the
parameter α:

(1− α) ∗ tiM + α ∗ diM , ∀i ∈ {1, . . . , n} (6)

to compute the merge criteria from which the test sequences
are generated. In order to generate a range of sequences, we
vary α from 0 to 1 and the resolution is selected according to
the desired quality of the sequences, available compute power
and traffic levels in the control zone. When the number of
vehicles in the control zone increases the resolution of α can
be made fine at the cost of computation.

A key feature of this algorithm is that the optimization
process for each sequence is designed to run in parallel.
This means that we can increase the α resolution depending
on the available compute cores without sacrificing real time
performance. Every sequence thus generated is then fed into
the optimizer in order to rank and select the best sequence
and control variable values.

C. Optimal velocity computation

The optimal control problems, one for each specific se-
quence under consideration q, seek to find the optimal com-
mand velocities of each vehicle ui, which would facilitate
the merging of vehicles according to the sequence q in an
optimal way.

1) Objective function: The objective function to obtain ui
for a given sequence q, is formulated as:

J(ui|q) =

n∑
i=1

pisλ(ui − v̄)2 + piv(1− λ)(ui − vi)2 (7)

In addition to the interpretation given in Section II-B,
the objective function J(ui|q) can be viewed as a trade-off
between minimizing the control effort (fuel consumption)
and maximizing the throughput of vehicles through the
merge zone. Throughput maximization is achieved through
the minimization of the difference between the vehicles com-
mand velocity (ui) and the speed limit (v̄). This stems from
the fact that the throughput through the merging bottleneck is
maximized when the speeds of all the participating vehicles
are maximized. This formulation focused on mean velocity
maximization is also based on the inherent nature of CAVs
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to maximize velocity in order to reach target destinations in
the shortest possible time.

2) Constraints: The constraints (set C in (5)) imposed
on this optimization problem ensure safety of operation
during merging (Remark 1), by preventing collisions between
vehicles, while providing controls which lie within the ca-
pabilities of each vehicle.

First, the command velocity ui(t), for all i ∈ {1, . . . , n}
and 0 ≤ t ≤ tif , should be bounded based on the speed
limits:

0 ≤ ui(t) ≤ v̄ (8)

as well as based on the acceleration capabilities of each
vehicle:

aimin∆t ≤ ui(t)− vi(t) ≤ aimax∆t (9)

where ∆t is set as the time resolution in our computations.
The next constraint refers to the dynamics of the system

and considers the new expected position of vehicle i after
time ∆t:

si(t+ 1) = si(t)−∆t
vi(t) + ui(t)

2
(10)

The assumption that ui is chosen such that the vehicle can
reach it in time ∆t is justified by (9) and the second term
of the objective function (7).

The expected position parameter computed by (10) is used
to ensure rear-end collisions do not occur on the mainline
and on-ramp respectively:

|sj(t+ 1)− sj′(t+ 1)| ≥ lj +Msr (11)

|sk(t+ 1)− sk′(t+ 1)| ≥ lk +Msr (12)

for all j, j′ ∈ {1, . . . ,m} mainline vehicles with j 6= j′ and
for all k, k′ ∈ {1, . . . , r} ramp vehicles with k 6= k′.

Here, Msr represents the safety margin used to prevent
rear-end collisions.

The equations (11) and (12) are then simplified by sub-
stituting the new expected position si(t + 1) values from
equation (10). The norm is removed using the ordered
precedence assumption which prevents vehicles overtaking
each other. We then obtain the form given in equations (13)
and (14) for the prevention of all rear-end collision on both
the mainline and on-ramp:

uj − uj+1 ≥ (vj+1 − vj) + 2
∆t (sj − sj+1 + lj +Msr)

(13)
uk − uk+1 ≥ (vk+1 − vk) + 2

∆t (sk − sk+1 + lk +Msr)
(14)

for all j, j+1 vehicles belonging in the mainline and k, k+1
vehicles located on the ramp.

We then compute time to merge tim for each vehicle i by:

tim =
si(t+ 1)

ui
(15)

Then the constraint,

tim ≤ ti+1
m − li

ui
− li+1

ui+1
−Msl (16)

for all consecutive vehicles i, i+ 1 in sequence q, is respon-
sible for ensuring that individual commands ui are chosen
such that vehicles merge in the order of the sequence under
consideration q. Here, Msl represents the safety margin used
to prevent lateral collisions during merging.

By substituting from equations (10) and (15), we simplify
equation (16) to (17). We also eliminate the li+1 term since
we restrict distance measurements to be always taken from
a vehicle’s front bumper. Therefore the following equation:

ui+1(si − ∆t
2 .vi + li +Msl) ≤ ui(si+1 − ∆t

2 .vi+1 −Msl)
(17)

for all consecutive vehicles i, i+ 1 in sequence q, plays the
role of both preventing lateral collisions during merging as
well as enforcing the order of merging to follow the tested
sequence q.

The constraints given by equations (8),(9),(13),(14) and
(17) along with the objective function in (7), form the
optimization problem for optimal vehicle command velocity
computation, given a test sequence q.

As a last comment, we note that the presence of the
variable bi in the set of constraints C in (5) causes the initial
formulation to be a mixed-integer quadratic programming
(MIQP) optimization problem, which would be difficult to
solve in real-time for this large scale problem. By incorpo-
rating the effect of bi into the computed priority pi and by
setting up separate constraints for the mainline and ramp,
as described above, we have reformulated the problem as a
quadratic programming (QP) optimization problem. This is
a very important result that has enabled fast computation of
the solution of each optimization problem in real-time.

3) Optimal Sequence Selection: If a feasible solution is
provided by the optimization above, the final cost value for
the tested sequence q and the output ui for each vehicle
are stored. Once the optimization is carried out for each
possible sequence q, the feasible sequences are sorted with
respect to the minimum objective value achieved. Then
the best sequence q∗ at current time t is compared to
the sequence assigned in the previous computation iteration
q∗(t−1). Generally, the computed best sequence q∗ along
with the suggested ui command velocities are broadcast to
all the vehicles. However, if the previous sequence q∗(t−1)

was also recalculated in the current cycle, and if the cost
reduction in selecting the new sequence q∗ when compared
to the previous sequence q∗(t−1) is less than a predetermined
switching threshold, then the previous sequence q∗(t−1) is
transmitted to all the vehicles along with the new suggested
ui command velocities corresponding to this sequence. This
ensures that the algorithm does not oscillate between two
closely related sequences with comparable costs.

It is also important to note that this method allows the
merging sequence to be changed at every update cycle, which
is an essential feature for heterogeneous traffic. For example,
when an emergency vehicle (EV) enters the control zone, the
merging sequence should be modified to give precedence to
the EV. This ability to switch rapidly and adapt to a new
merge sequence is a core component of our approach.
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4) Low-level vehicle controller: The optimal sequence
and suggested ui command velocities are received by each
of the vehicles in the control zone. In this formulation we do
not consider the delay of transmission and assume the data
is available almost immediately via technologies such as 5G
connectivity. The low-level vehicle controller in each vehicle
will calculate the optimal control parameters (acceleration
and deceleration) needed in order to achieve the desired ui
command velocity within the control time ∆t duration.

This low level controller should be made robust enough
to handle perturbations in both sensing and actuation. In
practical scenarios one cannot assume perfect information
and actuation. There will always be certain failures in sensing
such as receiving incorrect information broadcast from other
vehicles or malfunctions in on-board sensing systems. There-
fore, the low-level vehicle controller will attempt to reach the
target velocity as long as it is safe to do so. The multitude of
sensors on-board CAVs can be leveraged to check whether
it is safe for the vehicle to reach it’s target velocity.

IV. EXPERIMENTAL SETUP AND RESULTS

We evaluate the performance of the proposed approach
in a highway section simulation using the SUMO simulator
[19]. The simulation setup for the merge junction is shown in
Fig. 2a. The quadratic programming optimization problems
(Section III-C) are solved numerically using the Gurobi
software (version 9.1.1) [20]. The controller communicates
with the simulator using the TraCI traffic controller interface.
All simulations and optimization algorithms run in a personal
computer with an Intel i7-8750H CPU and 32GB of RAM.

(a) Merge junction simulation.

(b) Highway loop simulation.

Fig. 2: Experimental highway merge setup.

To simulate a continuous stream of vehicles and ensure
that on average the ratios of different vehicle classes remain
constant, we implemented a highway loop network as shown
in Fig. 2b. Probabilistic rerouting is used to decide what
percentage of the overall traffic is sent through the ramp. As
we consider only one mainline lane the rerouting parameter
is set to rp = 0.5 for all tests. Multiple tests are conducted
for different loop densities ld (number of vehicles in the
cyclic highway simulation). The loop density takes values
in ld ∈ [20, 80], while ensuring that all vehicle classes were

suitably represented. All tests were performed for a 2 hour
(7200s) time period, which reduces the variance of the values
of the performance scores of each algorithm tested. All the
parameters used in the tests conducted are given in Table I.

TABLE I: System parameters used in testing

Parameter Value
Control zone length 300 m
Simulation duration 2 hrs
Time step (∆t) 100 ms
Maximum number of sequences 12
Speed limit (v̄) 27 m/s
Mainline-Ramp rerouting ratio (rp) 0.5
Objective trade-off (λ) 0.7
Msr 2.0
Msl 10.0

A. Performance metrics

The key performance metrics used to evaluate merging
algorithms are (a) throughput mT (number of vehicles
that can merge onto the highway per hour), (b) density
mD (number of vehicles on the link), and (c) delay mL

(Average delay experienced by vehicles compared to the
ideal travel time). As density and throughput are related,
we also consider their combined effect using (d) mean
velocity mV , which is obtained by mV = mT/mD. Since we
focus on mixed traffic special attention is paid to the delay
faced by emergency vehicles. The total energy expended,
(e) fuel consumption mF , is also taken into consideration
which shows the importance in the minimization of large
fluctuations of the control commands. In this case we also
specifically compare fuel consumption in heavy vehicles,
such as trucks, as they consume larger quantities of fuel
during acceleration tasks.

B. Algorithms

In order to showcase the properties and appropriately
assess the performance of our methodology, we compare
it with three different approaches. First, we make a com-
parison with the baseline case of on-ramp merging without
cooperation among vehicles. In this baseline case, ramp
vehicles always give way to mainline vehicles. Furthermore,
we also compare against two commonly used collaborative
merging strategies, which better showcase the strengths and
potential weaknesses of our approach. The first of the two
is a FIFO-based approach, in which each vehicle is assigned
merging velocities in a greedy manner based on the order it
enters into the control zone. The second method, utilizes a
more advanced heuristic strategy known as zipper merging,
in which the merge sequence is roughly chosen based on
distance to merge with alternating selection between ramp
and mainline. It is important to note that all these methods
do not consider the heterogeneous nature of the traffic and all
vehicles are treated equally. To our knowledge, as this is the
first work to introduce a real time end-to-end optimization-
based merging algorithm for heterogeneous traffic, no direct
comparison with other optimization-based algorithms found
in the literature would be fair or informative. This is also

2024

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on May 09,2025 at 16:25:19 UTC from IEEE Xplore.  Restrictions apply. 



compounded by the fact that other constrained optimization
based methods cannot compute a real time solution for the
large scale simulation used in this comparison.

C. Results

The main objectives in the highway merge problem in-
volve maximizing the mean velocity (mV ) and throughput
(mT ), while minimizing the density (mD) on each lane. It
is also necessary to consider the minimization of the overall
fuel consumption (mF ) during merging and the delay (mL)
experienced by individual vehicles.

1) Main performance metric results: From the funda-
mental equation of traffic flow, we know that density mD,
the throughput mT , and the mean velocity mV , are linked
according to equation (18).

mT = mV ∗mD (18)

Therefore, these three factors are considered in unison. In
practice, the main goal of a highway merge control algorithm
is to keep the traffic flowing as fast as possible with minimum
density buildup on the lanes.

(a) Throughput variation (b) Density variation

(c) Mean velocity variation

Fig. 3: Comparison of performance for varying loop density

The values of these performance metrics for each of the
methods compared as a function of the loop density of the
vehicles are shown in Fig. 3. We observe that the methods
that utilize cooperation between vehicles perform drastically
better than the baseline approach, in which vehicles do not
cooperate with each other. In Fig. 3b we observe that our
method is capable of maintaining low levels of lane density
when compared to the other methods. This property becomes
more pronounced as the loop density on the highway section
increases. While in Fig. 3a, zipper merge is found to have
similar throughput levels to our method, the benefit of our
method becomes evident when we consider the combined
effect of throughput and density which is shown in Fig.

3c. We observe that the effective mean velocity achieved in
our method is considerably higher than all the other meth-
ods, especially in high loop density scenarios. Our method
achieves a 282% improvement in comparison to the baseline
case for mean velocity of flow. When compared to zipper
merge, an improvement of 81% is achieved at high loop
densities. However, we see that at low loop densities (few
vehicles on the road) the zipper merge algorithm performs
comparably to our method. This follows our intuition that
when there are very few vehicles on the road we don’t
require a complex optimization based algorithm and a simple
heuristic based algorithm performs adequately. However, as
the traffic on the road increases, which often leads to the
formation of bottlenecks at merge junctions, the benefit of
our optimization based method becomes apparent.

2) Delay metric results: The overall delay faced by the
individual vehicles on the highway is also a key factor
in merging control. The values for the delay metric are
compared in Fig. 4, in which our method shows considerably
better performance. In Fig. 4a which compares the average
delay in seconds experienced by vehicles, we observe that
our method achieves a 92% and 58% improvement when
compared to the baseline case and zipper merge respectively.

Once again this improvement is more pronounced at high
loop densities. When considering delay in heterogeneous
traffic it is important to consider the impact of delay on
different vehicle classes. This is specially true in the case
of emergency vehicles (EVs). As the other algorithms tested
consider all classes as equal, the delay faced by EVs is the
same as the delay faced by other vehicle classes. In contrast,
EVs in our approach face 17% less delays than other vehicle
classes. For example, at a loop density of 80, the average
delay faced by EVs is 13.7 sec in our method and 203.4 sec
in the baseline case. Fig. 4b depicts how EVs experience
less delays than the other vehicle classes in our method. It is
important to note that the proposed method offers adjustable
parameters which can be tuned to further reduce EV delay
at the cost of reduced mean velocity for overall traffic flow.

(a) Delay variation (b) EV Delay variation

Fig. 4: Comparison of delay faced with varying loop density

3) Fuel consumption metric results: The effect of these
algorithms on overall fuel efficiency is depicted in Fig. 5.
Here, Fig. 5a and 5b show the fuel consumption per vehicle
in all classes and the truck class respectively. As expected,
all cooperation based algorithms have much lower fuel con-
sumption than the baseline case. Additionally, even among
the cooperative methods, we see that at higher loop densities

2025

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on May 09,2025 at 16:25:19 UTC from IEEE Xplore.  Restrictions apply. 



our proposed method yields the best fuel efficiency. While
under the current parameters, the fuel savings percentages
for trucks are similar to other classes, our method allows
tuning the parameters to further reduce the truck class fuel
usage, at the cost of reduced overall throughput.

(a) Fuel consumption variation (b) Truck Fuel cons. variation

Fig. 5: Comparison of fuel consumption with loop density

4) Real-time operation: The algorithm in our optimiza-
tion based approach operates at a frequency of fs = 10Hz
(updates all control commands every 100ms). The time
required for the optimizer to compute control outputs for a
single sequence was around 25ms. Based on our computation
power, in the tests carried out, up to 12 different sequences
would be checked in each time step which, if computed
sequentially would require roughly 300ms. However, as this
algorithm was designed to run each sequence optimization
in parallel, the optimization task for all sequences takes less
than 50ms on a 12 core CPU. This showcases that the pro-
posed approach is more than capable of real time operation,
as this is considerably less than the desired recalculation
rate of 100ms It is important to note that the optimality
of the generated output control commands can be improved
by searching over a larger sample of sequences. However,
in order to achieve real time operation this would require
more computation resources. This means that if needed, by
utilizing a processing unit with more computational resources
(e.g. higher core count), the performance of this method can
be further enhanced, while continuing to operate in real time.

V. CONCLUSION

We introduce a novel constrained optimization based ap-
proach to cooperative highway on-ramp merging of heteroge-
neous CAVs. The key advantage of real time operation while
abiding to all safety constraints was achieved by a hybrid
dual architecture capable of parallel operation. Here, initially
we generate multiple merging sequences which are evaluated
in parallel by the optimizer to select the best control.
Furthermore, this work introduces priority assignment inside
the optimization process to cater to the varying requirements
introduced by heterogeneous traffic. The performance of this
method was verified through simulations using the SUMO
platform. Future work in this area would involve under-
standing the macro-level effects of this algorithm along with
the inter-vehicle interactions necessary for multi-lane high-
ways. Another interesting direction would be the creation
of a decentralized version of this algorithm based on V2V
communication.
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