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Abstract— Safe overtaking, especially in a bidirectional
mixed-traffic setting, remains a key challenge for Connected
Autonomous Vehicles (CAVs). The presence of human-driven
vehicles (HDVs), behavior unpredictability, and blind spots
resulting from sensor occlusion make this a challenging con-
trol problem. To overcome these difficulties, we propose a
cooperative communication-based approach that utilizes the
information shared between CAVs to reduce the effects of sensor
occlusion while benefiting from the local velocity prediction
based on past tracking data. Our control framework aims to
perform overtaking maneuvers with the objective of maximizing
velocity while prioritizing safety and passenger comfort. Our
method is also capable of reactively adjusting its plan to
dynamic changes in the environment. The performance of the
proposed approach is verified using realistic traffic simulations.

I. INTRODUCTION

The promise of increased safety, efficiency and ease of
access are the key motivations in the development and
introduction of connected autonomous vehicles (CAVs) into
modern road networks. While the situation where all vehicles
on the road are fully autonomous remains a long term
goal, it is likely that most initial CAVs introduced will
need to operate side by side with human driven vehicles
(HDVs) resulting in a mixed traffic situation. This results
in many additional challenges brought about by the lack
of cooperation and unpredictability of human drivers [1].
Overtaking on the incoming lane is a scenario where these
issues play a significant role due to the increased possibility
of head on collisions.

This scenario is further complicated by low visibility,
caused by sensor occlusion - a situation in which neighboring
vehicles block the line-of-sight view of vehicles ahead and
in other lanes. Due to this, there are several blind spots
in an autonomous vehicle’s perception of its environment.
This then leads to either overly conservative behavior which
reduces efficiency or highly risky maneuvers which may
lead to increased collisions. The solution to this problem
involves finding ways in which to bridge these gaps and
fill in the missing information in a CAVs field of vision.
To this effect, we explore the possibility of using vehicle
to vehicle (V2V) communication between CAVs to share
local information about neighboring tracked vehicles. The
on-board sensor suite on CAVs is capable of detecting
and tracking the dynamics of their immediate neighboring
vehicles. This information can then be shared with other
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CAVs within the communication range. This means that
in addition to its own on-board sensors, CAVs can collect
information about other on-road vehicles and obstacles by
communicating with CAVs downstream of its location.

Literature review

The task of overtaking for a single agent has been studied
extensively in literature with diverse control approaches.
Sampling-based methods such as [2] and [3] provide safety
guarantees, but can only provide asymptotic guarantees on
the discovery of a suitable trajectory. Optimization-based
approaches [4] and [5] yield good performance but are often
computationally expensive depending on the complexity of
the models used for the vehicle dynamics. Extensions of
these also explore the use of Robust MPC [6] and Stochastic
MPC [7] in order to incorporate more realistic dynamic
models and handle uncertainty in sensing and actuation.
Learning-based methods [8] and [9] have also been proposed
for overtaking trajectory generation with real time operation
capability but often lack safety guarantees. While these
methods have not been applied to incoming lane overtaking,
our previous work [10] explored the use of a mixed-integer
model predictive control (MI-MPC) strategy for bidirectional
overtaking for a single autonomous agent.

The use of communication among CAVs in order to
improve the overall efficiency and safety of many complex
traffic conditions such as highway merging [11] and traffic
shock wave dissipation [12] have been studied in literature.
This cooperation focused approach has multiple benefits in
a bidirectional overtaking scenario. Some of these benefits
have been studied in [13] and [14] where probabilistic driven
approaches have been applied to cooperative single direction
overtaking and lane changing respectively.

Contribution

The proposed method in this paper aims to combine the
benefits of cooperation driven communication-based CAV
control systems with the safety guarantees of a MI-MPC
optimization-based controller for the domain of bidirectional
overtaking in mixed traffic.

The main contribution of this work involves the implemen-
tation of a V2V communication-based multi-agent strategy
for autonomous bidirectional overtaking which reduces the
impact of blind spots created by sensor occlusion. In this
regard, we also propose a velocity tracking method for tra-
jectory prediction and an improved sensor occlusion model.

Our method was tested using the realistic SUMO traffic
simulation system, and the results and comparisons are pre-
sented. We show that our method leads to improved perfor-
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mance with less risky maneuvers, higher overall throughput
and a high success rate for overtaking attempts. Further tests
are also carried out to show the impact of CAV penetration
levels and lane density on the performance of our method.

II. PROBLEM DESCRIPTION

In the bidirectional overtaking problem, the controlled
(ego) vehicle attempts to travel at its maximum safe velocity
while safely overtaking the leading vehicles, if needed. In
this section, we model the bidirectional overtaking scenario,
road infrastructure used, characteristics of CAVs and HDVs,
and the proposed sensor occlusion model.

Notation
Throughout the manuscript, R denotes the set of real

numbers. For some a, c ∈ R and a < c, we will write
R[a,c] = {b ∈ R | a ≤ b ≤ c}. Furthermore, V(k) will
denote the set of all the vehicles in the simulation at time k
and A(k) will denote the set of all the CAVs in the simulation
at time k.

A. Bidirectional overtaking scenario description
In the bidirectional overtaking scenario, an ego vehicle is

required to overtake the leading vehicle(s) by moving into
the adjacent lane while avoiding incoming traffic. This sce-
nario involves three different types of vehicles: Autonomous
ego vehicle which carries out the overtaking maneuver, the
vehicles traveling ahead in the same lane as the ego vehicle
and the vehicles approaching in the incoming lane. The non-
ego vehicles can be either HDVs or CAVs. A simple three
vehicle overtaking scenario with a sample trajectory is shown
in Fig. 1, with the ego vehicle depicted in red and the lead
vehicle and incoming vehicle both depicted in yellow.

Fig. 1: Bidirectional traffic overtaking scenario.

B. Modeling the physical road structure
The physical road structure is modeled as a long continu-

ous road segment with two adjacent lanes, each with traffic
flow in opposite directions. We set the length of this road to 2
km, which is a parameter that can be modified. We denote the
speed limit of the road segment as v̄ and compute distances
in the Frenet coordinate system; the distance along the road
is defined as the longitudinal displacement and the distance
perpendicular to the road is defined as lateral displacement.
It is also possible to change the density of vehicles on this
road segment in either direction as necessary. These vehicles
take the form of either CAVs or HDVs, and we can change
the ratio of CAVs to HDVs (CAV penetration level) in the
simulation. A section of this simulated road is shown in Fig.
2, in which lane structure, HDVs, CAVs and CAV sensor
ranges are highlighted.

Fig. 2: Modeling a road section including vehicles.

C. Modeling CAV dynamics and control

Two different types of vehicles are used in this research.
Human driven vehicles whose motion is modeled according
to section II-F, and CAVs that are modeled as follows.

In our research, we assume that each CAV has on-board, a
low-level local controller ci, which is capable of computing
the necessary throttle and braking actuation commands in
order to execute high level velocity goals as well as compute
the steering commands that control the vehicles’ lateral
motion in order to keep the vehicle in lane. Therefore, for
the proposed high level controller, we find it unnecessary
to consider the highly non-linear dynamics of real-world
vehicles. This allows the ith vehicle to be modeled as a
point object moving along the center of the lane according
to the non-linear differential equation:

ṡi = f(t, si, ci), si(t
0
i ) = s0i (1)

where t0i is the initial time at which the ith vehicle enters
the road segment. Therefore, we can define the high-level
discretized and linearized longitudinal vehicle dynamics by
the following velocity control scheme:

si(k) = si(k − 1) +
vi(k − 1) + vi(k)

2
· Ts

vi(k) = ui(k)
(2)

where Ts denotes the sampling time while si(k), vi(k),
and ui(k) respectively denote the longitudinal displacement,
velocity and applied control of each vehicle i for i ∈ A(k) =
{1, . . . , n(k)}. Here, A(k) represents the set of CAVs on
the modeled highway stretch at time instant k and the total
number of CAVs is denoted by n(k). It is important to note
that the velocity control requested by the high-level controller
should be reachable by the low-level vehicle controller ci in
system (1). Additionally, as the control applied by the high
level controller is independent of the lane the CAV is in, we
also assume that the lane changing procedures are handled
by a separate lane change controller. The input to the lane
changing controller would be a high level goal indicating
which lane to change into and what time to begin the lane
change. For the overtaking case, the desired maneuver can be
classified as two sequential lane changes at calculated times.

At a time instant k, each CAV i, is assigned an integer
variable li(k) ∈ {0, 1} which denotes the lane it is currently
on (here, 0 and 1 represent the original lane and incoming
lane respectively). It also has a vehicle length Le

i parameter,
and has bounds on its maximum linear acceleration Amax

i
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and maximum deceleration Amin
i capabilities. Therefore, the

CAVs are defined by the following state vectors:

Xi(k) = [si(k), vi(k), li(k), L
e
i , A

max
i , Amin

i ]T (3)

Remark 1: For CAV i ∈ A(k), we define the sets Vi
0(k)

and Vi
1(k), as the set of all the vehicles in the CAV’s

original lane (li(k)=0) and CAV’s incoming lane (li(k)=1)
respectively.

D. Modeling CAV sensing capabilities

With regards to the sensing capabilities of the CAVs, each
CAV is assumed to have the minimum required on-board
sensing capability to detect the positions and velocities of
surrounding vehicles within a realistic sensor range. Each
CAV is assumed to be capable of tracking the positions
of up to five adjacent non-occluded vehicles surrounding it.
These vehicles involve the ego vehicles leader and follower
in its own lane as well as a maximum of three vehicles in
its adjacent incoming lane. In practice the actual number of
vehicles tracked may be lower due to sensor occlusion and
the density of vehicles on the road. A scenario where the ego
vehicle is tracking four surrounding vehicles is highlighted
in Fig. 3.

Fig. 3: Modeling sensing capability of CAVs.

This assumption of tracking surrounding vehicles is justi-
fied by the fact that modern CAVs have an advanced sensor
suite which allows them to track the relative displacement of
nearby line of sight obstacle/vehicles with very high accu-
racy. This data can then be used to compute the instantaneous
velocities of surrounding vehicles with low margin of error.
The main features of neighboring vehicles collected by each
CAV are the vehicles longitudinal position, current lane,
current velocity and a memory of past velocities.

In addition to the on-board sensor suite, the other im-
portant source of information available to the ego vehicle
is obtained in the form of V2V communication with other
CAVs. Once each CAV uses its on-board sensors to collect
the features of neighboring vehicles, it can then communicate
this information with other CAVs within its communication
range. Therefore, even if a vehicle is occluded to the ego
vehicle, as long as this vehicle is visible to a downstream
CAV, the ego vehicle can collect the information it needs for
safe and effective trajectory planning. When considering the
V2V communication capabilities of each vehicle, we assume
that the CAVs communicate using a combination of IEEE
802.11p and 5G networks. Additionally, in this research we
do not consider the impact of network delay and packet

loss during transmission. Therefore, we assume that vehicles
within a realistic communication range of each other can
share information in real time.

E. Improved sensor occlusion model

With the sensor occlusion model formulation, we aim to
capture the effects of neighboring vehicles on the visibility
range of a CAV. If there are no neighboring/blocking vehicles
close to the ego vehicle, the visibility region is assumed
to extend up to a fixed maximum value Ls, defined as the
sensor range. However, not all vehicles within this range are
visible to the CAV due to occlusion. The vehicle immediately
ahead of the CAV will block the vehicles further up ahead.
Additionally, depending on the proximity of the lead vehicle
to the ego vehicle, visibility will also be reduced in the
incoming lane. The resultant visible regions are shown in
Fig. 4.

Fig. 4: Sensor Occlusion Model.

Here, Li
d(k), Lc, Lw and Li

v(k) represent the distance gap
to the leading vehicle, half the average width of a vehicle,
the lane width, and the resulting un-occluded visible range in
the adjacent lane respectively. These variables are connected
as shown in (6).

zip(k) = sp(k)− si(k), (p, i ∈ V(k); p ̸= i) (4)

Li
d(k) = min

p∈V(k)
{{zip(k), Ls} | lp(k) = li(k)} (5)

tanθ =
Li
d(k)

Lc
=

Li
v(k)

Lw

Li
v(k) =

Li
d(k) · Lw

Lc

(6)

Given that Lc and Lw do not change with time, we can
compute the instantaneous adjacent lane visibility range as a
function of the distance gap to the leading vehicle. Vehicles
present in this visibility region can be tracked by the ego
vehicle and are added to the observation state of the ego
vehicle.

O0
i (k) = {p ∈ V(k) | lp(k) = li(k), 0 ≤ zip(k) ≤ Li

d(k)}
(7a)

O1
i (k) = {p ∈ V(k) | lp(k) ̸= li(k), 0 ≤ zip(k) ≤ Lv(k)}

(7b)
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Oi(k) = O0
i (k) ∪O1

i (k) (7c)

For an ego CAV i ∈ A(k), the set of observed vehicles
(7c) at time instant k, is denoted by Oi(k). The CAV i can
observe lead vehicles traveling ahead in its same lane (7a)
as long as the lead vehicle is within the measurement range
Ls. The CAV i can observe vehicles traveling in its adjacent
lane (7b), within the un-occluded visible region, Lv(k) (6).

F. Modeling HDVs - Microscopic traffic models

The process of modeling human driving behavior in
simulation usually involves two separate models. A car
following model, used to compute the safe following velocity
of a vehicle, considering its dynamic constraints and its
interactions with the lead vehicle. A lane change model,
used to determine when to change lane, and the parameters
necessary for a safe lane change maneuver. While there are
many car-following models such as the Krauss model [15]
and the Intelligent Driver Model (IDM) [16], we opt to use
the Krauss model for its accuracy and simplicity. This model
computes the safe following speed vs(t) by considering the
impact of speed limits v̄, vehicle acceleration capabilities
amax, the vehicle deceleration profile b(v(t)), distance gap
∆s(t) and speed vl(t) of lead vehicle, time step ∆t and
driver reaction time τr as shown in equation (8). The final
output speed provided to the vehicle will then have a zero
mean Gaussian noise added to it to model the imperfections
in human driving. For the lane change model we use the
Erdmann [17] model, which allows for the tuning of each
vehicle’s lane changing behavior.

vs(t) = min

v̄, v(t) + amax∆t, vl(t) +
∆s(t)− vl(t)τr

v(t)
b(v(t)) + τr


(8)

III. METHODS AND PROCEDURES

In this section, we describe the state estimation algorithm
to estimate the states of the observed vehicles, the prediction
model to generate the predicted future trajectories for those
vehicles, and the optimal control algorithm that is responsible
for the decision making aspects of each of the CAVs.

A. Tracked vehicle state prediction

In the literature, it has been shown that an arctangent
function is a good representation of the acceleration model of
a car. Therefore, we utilize a piecewise linear approximation
of the arctangent function, to model the velocity profile of
an observed vehicle. In order to predict the future velocity
profile of a vehicle p at time step k, we perform linear re-
gression with mean-squared error on the previously observed
velocity data points to obtain the slope (m̄k

p) parameter. We
utilize the estimated parameter to project the velocity into the
future for a given number of steps, defined as Ha. For the
remaining duration of the prediction horizon, we assume the
velocity to remain constant. This is compactly represented

in (9).

v̂kp(0) = vp(k)

v̂kp(j) =

{
min{v̄, v̂kp(j − 1) + m̄k

p · j}, 0 < j ≤ Ha

v̂kp(j − 1), Ha < j ≤ Hp

(9)
Here, v̂kp(j) corresponds to the predicted velocity j time
steps into the future starting at time instant k of an observed
vehicle p ∈ Oi(k), Ha corresponds to the acceleration
horizon and Hp corresponds to the prediction horizon.

Each CAV then estimates the relative longitudinal dis-
placement ŝkp(j) of the observed vehicles p ∈ Oi(k), (with
ŝkp(0) = sp(k)), using the computed predicted velocities
v̂kp(j) as follows:

ŝkp(j) = ŝkp(j − 1) +
v̂kp(j − 1) + v̂kp(j)

2
· Ts (10)

B. Surrounding vehicle state aggregation

Based on the state prediction model described in III-A,
we know that each CAV can track a group of vehicles
in its ‘line of sight’ as discussed in II-D. Note that the
vehicles that can be tracked by a CAV also depend on the
sensor occlusion status of the CAV as shown in II-E. This
tracked vehicle information, including predicted velocities
and positions, can then be shared with other CAVs within
V2V communication range. Therefore, the ego CAV i ∈
A(k) obtains information about its surrounding vehicles from
two sources, its own on-board sensor systems (Oi(k)) and the
information communicated to it from other CAVs (Ci(k)).

However, it is important that we do not overload the
optimization-based controller with unnecessary information,
which may lead to increased computation times. We intro-
duce a sorting step to select which surrounding vehicles are
most important for the overtaking problem. These vehicles
(set Ii(k)) that are pertinent to the decision-making process
of CAV i, can include up to three leading vehicles and one
following vehicle on the ego vehicle’s own lane as well as
up to two leading vehicles and one following vehicle in the
incoming lane. Therefore, the predicted future states of up
to six vehicles (set Wi(k)) can be provided to the MI-MPC
overtaking controller. The next step is to populate Wi(k)
based on the information availability of vehicles in set Ii(k).

Wi(k) = Ii(k) ∩ (Oi(k) ∪ Ci(k)) (11)

The MI-MPC controller of CAV i will then be provided
the predicted states of the vehicles in Wi(k).

C. Optimal model predictive control formulation

The proposed optimal controller is responsible for com-
puting the sequence of velocity and lane change commands
which would allow the ego CAV to maximize its velocity
while respecting system dynamics and safety constraints. In
this formulation we also assume that the longitudinal and
lateral dynamics of the ego CAV are decoupled [18], as
justified by the lower road curvatures present in highway
overtaking scenarios and the capability of low-level lane
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change controllers to perform maneuvers while respecting
lateral dynamic constraints [19]. Note that this proposed
optimal controller is present on every CAV i ∈ A(k) and
they all perform their own computations independently.

1) Objective function: Each CAV i ∈ A(k) has an optimal
controller, formulated as a mixed-integer model-predictive
optimal control problem (MI-MPC), that provides, at any
time instant k, the control input ui(k + 1), and the binary
overtaking decision Di(k + 1).

The objective function is formulated as a maximization
of the velocity of the ego CAV while minimizing the time
spent in the incoming lane and minimizing abrupt changes
in velocity. This is defined as follows:

min
uk
i (1),··· ,u

k
i (H);

Dk
i (1),··· ,D

k
i (H)

H∑
j=1

[−γ1 · uk
i (j) + γ2 ·Dk

i (j)

+ γ3 · (uk
i (j)− uk

i (j − 1))2]

(12)

Here, H denotes the planning horizon. The proposed
optimization objective (12) contains three trade-off param-
eters γ1, γ2 and γ3, which handle the trade-off between
maximizing velocity, minimizing time spent in the incoming
lane and minimizing sudden changes in velocity. Increasing
γ1 leads to increased focus on velocity maximization which
results in more aggressive overtaking behaviors and a less
comfortable experience for passengers. Increasing γ2 and γ3
on the other hand, leads to a reduction in risky overtakes
while improving the comfort of the passengers, at the cost
of increased travel time.

2) Dynamic constraints: The dynamic constraints ensure
that the optimization controller generates reachable controls.
At time instant k, the initial values of position, velocity
control and lane control are set as ski (0) = si(k), uk

i (0) =
vi(k) and Dk

i (0) = li(k) respectively. Next, the longitudinal
command velocity uk

i (j), for all j ∈ {1, . . . ,H}, is bounded
by the speed limit:

0 ≤ uk
i (j) ≤ v̄ (13)

as well as the acceleration capabilities of each vehicle:

Amin
i · Ts ≤ uk

i (j)− uk
i (j − 1) ≤ Amax

i · Ts (14)

where Ts, as referenced previously, is the time resolution
for our computations. Regarding the lateral movement, we
confine the time-dependent binary decision variable Dk

i (j)
to {0, 1}. More specifically, Dk

i (j) = 1 corresponds to the
decision to travel in the adjacent lane while Dk

i (j) = 0
represents the decision to travel in the original lane. A
difference in the current lane and the binary decision variable
(i.e. Dk

i (1) ̸= li(k)) will trigger a lane changing maneuver
at time instant k. We find that this simplification leads to a
significant reduction in computational complexity.

3) Safety constraints: We next introduce the constraints
responsible for the prevention of rear-end and lateral colli-
sions. The longitudinal positions (si(k)) of the CAV are com-
puted with respect to the decoupled longitudinal dynamics
model given in equation (2).

At any future time step j starting from time instant k,
the ego CAV needs to maintain a safe longitudinal distance
to all the known vehicles traveling in its current lane. This
requirement can be defined as:

(1−Dk
i (j)) · (|ŝkp(j)− ski (j)| − (Le

p +M i
sp(j))) ≥ 0,

∀p ∈ {Vi
0(k) ∩Wi(k)}

(15)
Dk

i (j) · (|ŝkq (j)− ski (j)| − (Le
q +M i

sq (j))) ≥ 0,

∀q ∈ {Vi
1(k) ∩Wi(k)}

(16)

where Vi
0(k) and Vi

1(k) correspond respectively to the
original lane and incoming lane vehicle set for the CAV
i. Here, equations (15) and (16) represent the collision
prevention constraints in the original and the incoming lanes
respectively. These constraints need to be checked for all
time instances in the planning horizon (∀j ∈ {1, · · · , H}).
We define M i

sp(j), the longitudinal safety margin that the ego
CAV i ∈ A(k) needs to maintain from the vehicle p ∈ V(k)
at time instant k, as follows:

M i
sp(j) = M0p +

Mvp

v̄
v̂kp(j) +

Map

Amax
i

·
|v̂kp(j)− v̂kp(j − 1)|

Ts

+ 1Vi
1(k)

(p) ·
Mlp

v̄
· (vki (j) + v̂kp(j))

(17)
The safety margin M i

sp(j) ∈ R>0 for vehicle p depends
on the longitudinal velocity, longitudinal acceleration, and
the relative longitudinal velocity if p is in the incoming
lane of CAV i (p ∈ Vi

1(k)). Here, M0p ∈ R>0 represents
the nominal safety gap that will be maintained regardless
of vehicle p’s driving behavior. Additionally, Mvp ∈ R>0,
Map

∈ R>0 and Mlp ∈ R>0 correspond respectively
to the multiplicative factors associated with the velocity,
acceleration, and lane of vehicle p.

To simplify the optimization process, we pose the safety
constraints in the standard linear form, using multiple ap-
plications of the big-M method [20]. The optimization con-
straint (15) is then converted to (18) and (19), while (16) is
converted to (20) and (21). This converts the optimization
problem into a standard mixed integer quadratic program
[21], which is computationally efficient to solve.

(ŝkp(j)− ski (j) +N0 · a(j)− (Le
p +M i

sp(j)))

+N1 ·Dk
i (j) ≥ 0 (18)

−(ŝkp(j)− ski (j)−N0 · (1− a(j)) + (Le
p +M i

sp(j)))

+N1 ·Dk
i (j) ≥ 0 (19)

(ŝkq (j)− ski (j) +N0 · b(j)− (Le
q +M i

sq (j)))

+N2 · (1−Dk
i (j)) ≥ 0 (20)

−(ŝkq (j)− ski (j)−N0 · (1− b(j)) + (Le
q +M i

sq (j)))

+N2 · (1−Dk
i (j)) ≥ 0 (21)

Here, these constraints are repeated ∀p ∈ (Vi
0(k) ∩Wi(k)),

∀q ∈ (Vi
1(k) ∩ Wi(k)) and ∀ j ∈ {1, . . . ,H}. Also,

N0, N1, N2 ≫ 0, and a(j), b(j) ∈ {0, 1}. The constants
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N1 and N2 allow for automatic satisfaction of the inactive
constraints based on the value of Dk

i (j). The constant N0,
in conjunction with the boolean variables a(j) and b(j)
allows for the transformation of the absolute relative distance
constraints in (15) and (16) into linear constraints.

The constraints given by equations (13), (14), (18), (19),
(20) and (21) along with the objective function in (12),
form the optimization problem for optimal CAV longitudinal
command velocity and lane changing decision computation.
The output of the optimization problem at time instant
k is {uk∗

i (1), · · · , uk∗
i (H),Dk∗

i (1), · · · ,Dk∗
i (H)} which is

applied in a receding horizon fashion, i.e., ui(k + 1) =
uk∗
i (1), and Di(k + 1) = Dk∗

i (1).
Remark 2: The behavior of the algorithm can be mod-

ified by altering the safety margin (M0p , Mvp , Map and
Mlp ) parameters. In our tests, these parameters are tuned
empirically to guarantee safe overtaking behavior whenever
overtaking attempts are carried out. Additionally, the pro-
posed optimal controller does not explicitly account for the
time taken by the low-level lateral controller to execute its
desired maneuver. We note that this simplification does not
introduce further safety concerns, given that L0i has been
tuned appropriately (e.g. chosen large enough), and that the
ego CAV has the ability to retract a lane-changing decision
without having to move all the way to the center of the
adjacent lane, which is achieved by the receding horizon
framework of MPC.

4) Low-level lateral controller: The proposed framework
allows for the incorporation of any lane-changing model
and low-level lateral controller found in the literature [22],
[23], as long as this controller does not result in significant
changes to the longitudinal dynamics of the system. An
example of such a decoupled lateral controller is provided
in [7].

IV. EXPERIMENTAL SETUP AND RESULTS

The performance of the proposed approach is evaluated
on a bidirectional highway road segment simulation, imple-
mented on the SUMO [24] traffic simulation platform. The
simulation setup for the highway segment is shown in Fig.
5. The controller communicates with the simulator using the
TraCI traffic controller interface. All simulations and control
algorithms are run on a personal computer with an Intel i7-
8750H CPU and 32GB of RAM.

Fig. 5: Bidirectional road segment simulation.

The length of the bidirectional highway segment simulated
is 2 km long. The vehicles used were a mix of CAVs and
HDVs in varying proportions (CAV penetration levels).

A. Proposed method performance
The performance of our proposed communication-based

overtaking algorithm is evaluated according to its ability to

Simulation Parameters Value
Simulation step size 100 ms
Simulation duration 1 hour

Road length 2 km
Road speed limit (v̄) 20 m/s
Average HDV speed 10 m/s

Controller Parameters Value
Controller sampling time (Ts) 500 ms

Maximum acceleration (Amax) 4 m/s2

Maximum deceleration (Amin) -9 m/s2

Maximum velocity (V max) 20 m/s
CAV sensing range (Ls) 150 m

Planning horizon (H) 10 s
Safety Margin Parameters ([L0i , Lvi , Lai , Lli ]) [10, 5, 5, 10]

TABLE I: Simulation & Controller Parameters.

avoid collisions, perform successful overtakes in order to
maximize throughput and minimize the amount of failed
overtake attempts and risky maneuvers. Fig. 6 shows the

Fig. 6: Vehicle trajectories of 2 CAVs attempting to overtake
in the presence of 9 HDVs. Overtakes occur when red CAV
trajectory crosses blue HDV trajectory.

trajectories taken by 11 vehicles, 2 of which are CAVs
following our control algorithm. The trajectories of these 2
CAVs are marked in red with the color switching to green
whenever these CAVs move into the incoming lane. The
blue trajectories having positive gradient depict the HDVs
traveling in the same direction and lane as the CAVs. The
purple trajectories having negative gradient depict the HDVs
traveling in the opposite direction to the CAVs in the incom-
ing lane. To avoid confusion we selected a section of the
simulation in which no incoming lane CAVs were present.
Overtakes occur whenever the CAV trajectory crosses a same
lane HDV denoted in blue. Fig. 6 shows four such successful
overtakes. Note that at the point of overtaking, the trajectories
of the CAVs should be green indicating that the CAV is in the
incoming lane. As such collisions with CAVs occur only if a
blue trajectory intersects a red trajectory (collision in original
lane) or if a purple trajectory intersects a green trajectory
(collision in incoming lane). We do not observe any of these
conditions which shows us that our algorithm allows for
collision free successful overtaking with the minimum time
spent in the incoming lane.

Additionally, we note that the average time required for
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each optimization computation step for an ego CAV is
32.36ms with a standard deviation of 13.19ms. As the
controller operates with a time step of 500ms, this provides
excess margins to ensure real time operation capability.

B. Comparison between methods

In order to highlight the benefits of the proposed
communication-based approach, we compare its performance
with an approach which does not use any inter-vehicle
communication (Single Agent) and an approach which as-
sumes the CAV has global knowledge (Global Info) about
its surrounding. In the single agent approach, CAVs cannot
communicate with each other and must rely on its own sensor
information for decision making. In the global information
case, CAVs make the unrealistic assumption of having access
to the states of all its neighboring vehicles irrespective of
sensor occlusion status. We utilize two key metrics to com-
pare the performances of these three algorithms: Number of
overtakes attempted per CAV and Success ratio of completed
overtakes to attempted overtakes. Here, overtakes attempted
tracks the number of times the CAV moves into the incoming
lane to try to perform an overtaking maneuver. Overtaking
success on the other hand tracks what percentage of these
overtaking attempts actually lead to a successful overtaking
maneuver. The performance of the three algorithms in re-
gards to these two evaluation metrics with varying traffic
flow conditions is depicted in Fig. 7 and Fig. 8. Here, flow
rate represents the vehicles per minute entering into the
simulation. As the average velocities of vehicles remains
generally constant, flow rate is also directly proportional to
the density of vehicles in the simulation.

Fig. 7: Overtaking success over varying flow rate.

From Fig. 7, we observe that the cooperation based method
as expected performs significantly better than the single agent
method. This difference in performance is highlighted further
with increasing levels of input flow rate. This is due to the
fact that with increasing input flow rate, there is a higher
probability that some of the vehicles within communication
range of the ego CAV are other CAVs which can share
information about their neighboring vehicles. This provides
the ego CAV with more information about its surroundings

Fig. 8: Overtakes attempted over varying flow rate.

and leads to less risky overtaking attempts and more overtak-
ing successes. As expected the unrealistic global information
method outperforms our cooperative method. However, we
observe that this difference reduces with increasing input
flow rate for the same reason involving increased number of
CAVs in communication range. From Fig. 8, we observe that
up to a certain input flow rate, all methods show an increase
in overtake attempts since at higher densities there are more
HDVs to overtake. However, beyond a certain level of flow
rate we see a overall drop in overtaking attempts as there
are less overtaking opportunities due to increased vehicle
density. We also find that our method is able to gather enough
information about its surroundings using communication,
resulting in very low levels of risky overtakes attempted as
witnessed by its comparative performance to single agent and
global info strategies in Fig. 8.

C. Impact of CAV penetration levels

For our cooperative control strategy we find that the CAV
penetration level plays a significant role in performance
output.

Fig. 9: Overtaking success over CAV penetration level.

Fig. 9 shows an increase in successful overtakes in the
cooperative method with increasing CAV penetration. This
is due to the increase in the number of CAVs within com-
munication range providing information to the ego CAV (i.e.
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Fig. 10: Overtakes attempted over CAV penetration level.

increased CAV penetration leads to increased information
available for decision making).

In Fig. 9 and 10 we observe that the overall performance
of our cooperative algorithm lies in between that of the
global info and single agent methods. On average we achieve
around 40% improvement over the single agent method
in terms of successful overtakes and reduced unnecessary
overtaking attempts. We also find that as the CAV penetration
increases our method approaches the performance of the
global information approach.

V. CONCLUSION

We propose a novel bidirectional overtaking method for
CAVs in mixed traffic, involving a V2V communication-
based cooperative control strategy. In this method the CAVs
share information with each other allowing them to overcome
blind spots in sensing and perform safer overtaking maneu-
vers. We couple the capabilities of V2V information shar-
ing for traffic state estimation with a mixed-integer model
predictive controller, capable of computing safe overtaking
trajectories, in a bidirectional mixed-traffic setting. We also
perform explicit modeling of limited sensor ranges and blind
spots caused by sensor occlusion to allow for realistic dense
traffic performance tests of our approach. The performance
of this method is evaluated using the SUMO platform and we
demonstrate that this method is capable of achieving a much
higher percentage of successful overtakes while reducing
the amount of risky unnecessary overtaking attempts when
compared to a single agent method with no communication
between agents. Future work could involve collaborative
decision making among CAVs and exploration of learning-
based approaches to control for bidirectional overtaking.
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